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SPICE: A Sparse Covariance-Based Estimation
Method for Array Processing

Petre Stoica, Fellow, IEEE, Prabhu Babu, and Jian Li, Fellow, IEEE

Abstract—This paper presents a novel SParse Iterative Co-
variance-based Estimation approach, abbreviated as SPICE, to
array processing. The proposed approach is obtained by the
minimization of a covariance matrix fitting criterion and is par-
ticularly useful in many-snapshot cases but can be used even in
single-snapshot situations. SPICE has several unique features not
shared by other sparse estimation methods: it has a simple and
sound statistical foundation, it takes account of the noise in the
data in a natural manner, it does not require the user to make
any difficult selection of hyperparameters, and yet it has global
convergence properties.

Index Terms—Array processing, covariance fitting, direction-of-
arrival (DOA) estimation, sparse parameter estimation.

I. INTRODUCTION AND PRELIMINARIES

C ONSIDER an array processing scenario in which the
main problem is to estimate the location parameters of a

number of narrowband sources that are present in the array’s
viewing field. Let denote the set of possible locations, and
let be a generic location parameter. Also, let denote
a grid that covers . We assume that the grid is fine enough
such that the true location parameters of the existing sources
lie on (or, practically, close to) the grid. Under this reasonable
assumption we can use the following nonparametric model for
the output of the array (see, e.g., [1]):

(1)

where is the total number of snapshots, is the number of
sensors in the array, is the th observed snapshot,

denotes the array transfer vector (aka manifold or
steering vector) corresponding to is the unknown
signal impinging on the array from a possible source at , and

is a noise term.
A sparse (or semi-parametric) estimation method makes the

assumption, reminiscent of the parametric approach, that only
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a small number of sources exists and therefore that only a few
rows of the signal matrix

...
...

...
... (2)

are different from zero. The estimation problem is then to de-
cide from the data which rows of the above matrix are
nonzero. Indeed, once this is done, the solution to the location
estimation problem, which is usually the main goal of array pro-
cessing, is immediate : if the row (let us say) of (2) is deemed
to be different from zero then we can infer that there is a corre-
sponding source at an estimated location equal to .

The previous formulation of the location problem begs for the
use of basic ideas from the area of sparse parameter estimation,
or rather simple extensions of those ideas to the present multi-
snapshot case. To describe these ideas briefly, let

(3)

... (4)

(5)

where the superscript denotes the conjugate transpose (we de-
note the matrix in (5) by to reserve the notation for an ex-
tended form of (5) that will be introduced in the next section).
A direct application of the -norm minimization principle (see,
e.g., [2]) to the present scenario described by (1)–(5) consists of
estimating the matrix as the solution to the following con-
strained minimization problem:

(6)

where denotes the Euclidean norm for vectors and the Frobe-
nius norm for matrices, and is a threshold that must be chosen
by the user. Note that the objective in (6) is equal to the -norm
of the vector , an observation that shows clearly that
this approach is a direct extension of the standard single-snap-
shot approach of, e.g., [2].

A method for array processing based on (6) was pursued in
[3]. Note that (6) is easily recognized to be an SOCP (second
order cone program), see, e.g., [4], which can be efficiently
solved provided that , , and do not take on too large
values. However, in the array processing application this is not
necessarily the case : indeed, while (tens to hun-
dreds) is reasonably small, and
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(depending on the desired resolution and the dimension of
(1D, 2D, 3-D etc.)) can be rather large. For such large dimen-
sional problems the currently available SOCP software (see,
e.g., [5]) is too slow to use. In an attempt to overcome this com-
putational problem, [3] suggested a way to reduce the number
of columns of and in (6) to manageable values by means
of a singular value decomposition operation.

The approaches that rely on (6), such as the one in [3], suffer
from a number of problems. First, the motivation of (6) is
more clearly established in the noise-free case than in the more
practical noisy data case. Second, and likely related to the first
problem, there exist no clear-cut guidelines for the selection of

in (6) (see, e.g., [6] for a critical discussion on this aspect).
Finally, solving (6) as an SOCP may be too time consuming
for some applications in which , and especially take
on large values, and the available techniques for reducing the
dimensions in (6) (such as that suggested in [3]) require the
choice of further hyperparameters, besides , and even so they
are only approximate.

In this paper we present a new method of sparse parameter
estimation in models of the type of (1). This method, which is
called SPICE (SParse Iterative Covariance-based Estimation),
is obtained using a novel covariance-based fitting approach that
was recently introduced in [7] where the focus was on time-
series data (the single-snapshot case) as opposed to the array
data (the multi-snapshot scenario) considered here. SPICE has a
number of useful features that are hardly shared by other sparse
estimation methods. In particular, SPICE does not suffer from
the problems described in the previous paragraph. Indeed, as
will be shown in the next section, SPICE has a sound (covari-
ance-based) statistical motivation which makes it possible to use
the method in noisy data scenarios without the need for choosing
any hyperparmeters. Additionally, the SPICE algorithm has a
simple form, and yet it enjoys global convergence properties.
We will show that the covariance fitting problem that SPICE
solves can be reformulated as an SOCP of the form of (6) but
with , with and replaced by other matrices with
only columns (typically ), and with row-augmented
matrices and that, unlike and in (6), take account of
the noise term in the data (1). This SOCP formulation of the
SPICE estimation criterion shows that the -norm minimiza-
tion problem in (6) can be given a simple statistical motivation
based on covariance fitting, provided that the matrices in (6) are
suitably defined, see the rest of this paper for details.

II. SPICE ESTIMATION CRITERION

Let us assume that

...
...

. . .
...

(7)

where stands for the expectation operator, and

if
elsewhere.

(8)

This assumption on the noise term in (1) is reasonable in most
applications. Let us also assume that the signals and the
noise are uncorrelated with each other for any and that

(9)

Then the data snapshots are uncorrelated
with one another and have the following covariance matrix:

...
...

. . .
...

...
. . .

...
...

...
...

...
...

...
...

...
. . .

...

...

(10)

where

(11)

...
. . .

...
...

...
...

...
...

...
...

...
. . .

...

...
. . .

...
...

...
...

...
...

...
...

...
. . .

...

(12)

The assumption in (9) that the source signals are spatially un-
correlated, which led to the above expression for the covariance
matrix , does not always hold: in some applications the signals
can be correlated or even coherent. However the SPICE method
proposed in this paper is robust to this assumption—we refer to
[7] (see also [1]) for a theoretical explanation of this robustness
property, which will be illustrated numerically in Section V.

We will consider the following covariance fitting criterion for
the purpose of parameter estimation (see, e.g., [8] and the refer-
ences therein):

(13)
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where denotes the positive definite square-root of

(14)

and the inverses of and are assumed to exist. Note that
exists under weak conditions: indeed, while the “true” values of
many in may be zero, one typically has

which renders nonsingular. Regarding , the in-
verse of this matrix exists with probability one as long as

. However, for the sample covariance matrix is sin-
gular and therefore (13) cannot be used. In the latter case, one
can estimate the parameters by minimizing the following
criterion, instead of (13):

(15)

The above criterion is the one used in [7] where the focus was
on the time series case with . In the present array pro-
cessing scenario, however, we prefer to consider (13) because
usually the condition is satisfied and because (13) has
a statistically stronger motivation than (15): indeed, under cer-
tain conditions specified in [8], it can be shown that the param-
eter estimates minimizing (13) are statistically asymptotically
(in ) efficient, whereas the estimates obtained from (15) are
suboptimal. Nevertheless, we should note that what we do in
the following for (13) applies with minor modifications to (15)
as well, see Remark 1 below—this observation can be useful in
those array processing applications in which and there-
fore in which (15) should be used in lieu of (13).

A simple calculation shows that

(16)

where

(17)

It follows from (16) and (17) that the minimization of is equiv-
alent to the minimization of the function

(18)

Remark 1: A similar calculation shows that in the case of
(15) the function to be minimized with respect to the unknown
powers is

(19)

Owing to the analogy between (18) and (19), it should come as
no surprise that what we do in the following for (18) can also be
done for (19) if necessary (e.g., for ).

The problem of minimizing in (18) with respect to
can be easily shown to be an SDP (semi-definite program), see

Appendix A, and is therefore convex (see, e.g., [9]). Solving (18)
as an SDP, however, is not recommended due to the fact that the
available SDP solvers are too computationally intensive for the
values of , , and encountered in many array processing
applications. Consequently we adopt a different line of attack
that consists of replacing the problem of minimizing (18) by a
related problem, as described next.

It follows from (17) that a consistent (in ) estimate of the
right-hand side of this equation is given by . Therefore, we
can think of reformulating the problem of minimizing as the
following constrained minimization:

(20)

where

(21)

Interestingly, the problems (18) and (20) are not only asymptoti-
cally equivalent (as increases, and under the condition that
in (10) can represent the true covariance matrix) but they are ex-
actly equivalent (in general) in the sense that their solutions are
scaled versions of each other (note that a scaling of has no
effect on source location estimation). This equivalence property
is proved in Appendix B where we also show that the problem
obtained from (18) by constraining the first term to (a con-
straint suggested, once again, by asymptotic considerations), in-
stead of constraining the second term as in (20), is equivalent to
(18) and (20) as well.

The problem (20) is also an SDP, and therefore convex.
Furthermore, note that the linear constraint in (20) is of the
(weighted) -norm type, and thus it can be expected to be
sparsity inducing for the solution to (20). Apparently, the crite-
rion in (20) was never considered in the previous literature on
sparse parameter estimation. On the other hand, interestingly
enough, this type of criterion occurs frequently in the seemingly
unrelated literature on optimal experiment design (see, e.g.,
[10] and the references of that paper). The latter literature (in
particular [10]) has served as a source of inspiration for [7] and,
to some extent, for this paper as well.

III. SPICE UPDATING FORMULAS

Let and consider the following problem:

(22)

The solution to (22) is given (for fixed ) by

(23)

and the corresponding minimum value of the function in (22) is

the original objective in (20) (24)

To prove the above assertion, observe that (23) follows if we can
show that (hereafter the notation , with and being
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Hermitian matrices of appropriate dimensions, means that the
difference matrix is positive semi-definite):

(25)

By standard properties of partitioned matrices (see, e.g., [11,
Lemma A.3]) and the fact that , (25) holds if and only if
the following partitioned matrix is positive semi-definite:

(26)

The central matrix in (26) can be rewritten as

(27)

and thus it is obviously positive semi-definite (because it has
the form , with ). Therefore, (25) (and
hence (23)) is proved and then (24) follows via substitution.

To summarize, we have proved above (see (24)) that the mini-
mization of the objective in (22) with respect to , for any fixed

, leads to the original function of in (20). Then it fol-
lows that the minimization of (22) with respect to and
yields the same as the minimization of (20). The usefulness
of this observation lies in the fact that the minimization of the
augmented function in (22) can be conveniently done by means
of a cyclic algorithm that minimizes (22) with respect to , for
fixed , then minimizes (22) with respect to , for given , and
so forth until convergence. The solution to the first step of this
algorithm was already derived, see (23). The solution needed in
the second step can also be obtained in closed form. To show
how this can be done, let

... (28)

and observe that

(29)

A. The Case of Different

By the Cauchy–Schwarz inequality

(30)

From this, it follows that the minimization of the objective in
(22) with respect to (s.t. and )
gives (for fixed ):

(31)

and the corresponding minimum value of the objective is

(32)

Equation (31) above provides the solution to the second step
of the cyclic algorithm, whereas the solution to the first step is
given by (23). Combining (23) and (31) leads to the updating
formulas of the SPICE algorithm in which only the powers
(that are the quantities of main interest) appear explicitly:

(33)

(34)

where the index denotes the iteration number, and is the
matrix made from . The algorithm can be initialized
with the power estimates obtained by means of the periodogram
method (see, e.g., [1]):

(35)

Remark 2: The SPICE algorithm for the alternative covari-
ance fitting criterion in (15) (or (19)) can be readily derived by
paralleling the above calculations. The result is an updating for-

mula similar to (33) above with the only difference that
in (33) and (34) should be replaced by and in (21) by

.

B. The Case of Identical

In some applications, it is known that the noise components in
the different elements of the array output vector have the same
variance:

(36)

Using this information is important since, based on it, we can
reduce the number of powers that need to be estimated. To de-
rive the necessary modification of SPICE, that takes (36) into
account, first observe that the minimization of (22) with respect
to is not affected by (36). However the minimization with re-
spect to and , for fixed , is slightly different. Under
the above constraint on , (29) becomes

(37)
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This function is to be minimized with respect to and
, subject to

(38)

where

(39)

By the same argument as above, see (30)–(32), the solution to
this optimization problem is

(40)

(41)

where

(42)

and the corresponding minimum function (for fixed ) is

(43)

Inserting the expression (23) for in (40) and (41), we obtain
the following modified SPICE algorithm for the case of (36):

(44)

(45)

(46)

Initial estimates of the powers, for , can still be
obtained with the periodogram (see (35)), and can be ini-
tialized for instance as the average of the smallest values of

each multiplied by . To motivate this choice for
note that, at least for sufficiently large, we have

with the equality being likely to
hold for the smallest values of , e.g., for the smallest such
values. This observation implies that (below are the

smallest values of the set and the corresponding
manifold vectors)

(47)

can be expected to be a reasonable estimate of .

Because SPICE monotonically decreases the objective
function (due to its cyclic operation) and as the minimization
problem it solves is convex, we can expect that the algorithm
has global convergence properties. That this is indeed the case
follows from the general analysis in [10] where it was proved
that, under weak conditions (essentially requiring that
and that the matrix stays positive definite as the iteration
proceeds), the limit points of the SPICE iterative process are
global solutions to (20).

IV. SOCP FORMULATION OF SPICE

SPICE takes account of the noise without introducing any hy-
perparameters to be selected by the user. Indeed, SPICE is a
fully data adaptive approach that estimates both and
from the available data snapshots. As already mentioned, to our
knowledge, the SPICE criterion was never used in the previous
literature on sparse parameter estimation. It is therefore some-
what unexpected that SPICE can be related to (an extended ver-
sion of) the classical -norm minimization approach in (6), as
we explain in the rest of this section.

As indicated in Section II the SPICE estimation problem,
(20), can be cast and solved as an SDP. However it can also
be reformulated as an SOCP which is a special case of SDP. It
is this reformulation of (20) as an SOCP that reveals the connec-
tion between SPICE and a certain extended -norm minimiza-
tion problem. To reformulate SPICE as an SOCP we proceed
in the following way. Instead of minimizing (22) cyclically (or
alternately) with respect to and , we minimize this function
with respect to for arbitrary . The result of this minimiza-
tion operation is already available from the calculations in the
previous section where it was shown that the minimizing powers
are given by (31) and the corresponding minimum function by
(32). It remains to minimize (32) with respect to (under the
constraint in (22)):

(48)

Once is obtained from (48), can be calculated using (31).
The above problem, which is an SOCP (see Appendix A),

is similar to the -norm minimization problem (6). However,
there are also significant differences between these two prob-
lems, as well as between the ways in which they have been ob-
tained, as follows.

i) The -norm in (48) has a weighted form, with the
weights determined by the data. It is well known that

is an estimate of the inverse power
corresponding to the th point of the location grid (see,
e.g., [1]). Therefore, the smaller the said power the larger
the and consequently more weight is put on mini-
mizing the associated in (48), which intuitively is the
way it should be. Furthermore, the -norm objective in
(48) follows naturally from the statistically sound covari-
ance fitting criterion in (13), in contrast with the similar
objective in (6) whose motivation is essentially heuristical.

ii) The matrices and in (48) comprise extra rows that
account for the noise in the data, unlike the similar quan-
tities and in (6).
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iii) The inequality constraint in (6) is replaced in (48) by a hy-

perparameter-free equality constraint where is used
in lieu of in (6). Note that the matrix in (48) has

columns instead of columns as in (6), which evi-
dently makes (48) more convenient computationally (typ-
ically ). This dimensional reduction also follows
naturally from the employed covariance fitting criterion,
whereas the idea suggested in [3] for reducing the number
of columns of and in (6) was motivated on more or
less heuristical grounds and its use depends on the selec-
tion of an additional hyperparameter, besides .

The reader might wonder what is the relationship between
in (48) and in (6). To clarify this aspect, observe that we can
write the data (1) in the following matrix form:

(49)

where

(50)

It follows from (49) that we can assume, as in (6), that
provided that is “sufficiently large” ; furthermore, a

proper selection of would require information about the noise
variance(s) and the noise distribution, which is usually unavail-
able, and even then the inequality constraint in (6) could not in
general be made to hold surely for any finite practically conve-
nient value of . On the other hand, it also follows from (49)
that

(51)

and therefore that

(52)

The above equation clarifies the relationship between and .
Unlike (6), the equality constraint (52) holds deterministically
and it does not involve any hyperparameter. Note also that if

is row-sparse then so is the matrix in (52). Re-

garding the other matrix appearing in (52), viz. ,
it tends to zero as the signal-to-noise ratio (SNR) increases ;
however, for small or medium SNR values this matrix is not
row-sparse, which may be perceived as a downside of (52), al-
though a relatively minor one as the matrix can still be con-
sidered to be row-sparse because .

Whenever the constraint is enforced, the
above reformulation of the SPICE estimation problem should
be changed as follows. First, is obtained as the solution of the
following SOCP (see (43)):

(53)

(see Appendix A for the formulation of the above problem as an
SOCP). Then and are determined using (40)–(42).

Fig. 1. Inter-element spacings (in units of ���) for the NULA with� � ���.

According to our albeit limited experience, the SPICE mul-
tiplicative algorithm in (33) and (34) (or (44)–(46)) is usually
visibly faster than the SOCP-based algorithm that was outlined
in this section. However, the SOCP formulation of the SPICE es-
timation problem remains important for understanding the con-
nection between the proposed approach and the standard one
based on -norm minimization.

V. NUMERICAL ILLUSTRATIONS AND CONCLUDING REMARKS

In this section, we illustrate numerically the performance of
the proposed methods and compare it with the performance of
some standard methods from the literature. We will consider
both a uniform linear array (ULA) and a nonuniform linear
array (NULA). In the ULA case, the sensors are uniformly
placed with a spacing of , where denotes the wavelength
of the sources. The inter-element spacings in the case of NULA
are as shown in Fig. 1. The number of sensors in the array is

for ULA and for NULA. In the ULA case the
number of snapshots is whereas it is in the
NULA case. The steering vector for the ULA, corresponding
to a direction of arrival (DOA) equal to , is given by

... (54)

(observe that is a constant). The steering vector for
the NULA can be similarly defined. The interval for the DOA is

. We use a uniform grid to cover ,
with a step of 0.1 , which means that .

The source signals , see (1), have constant modulus,
which is usually the situation in communications applications.
We will consider cases with both uncorrelated and coherent
sources. The noise term in (1) is chosen to be white, both tem-
porally and spatially, and Gaussian distributed with zero mean
and variance .

A. Fixed Sources : DOA Estimation

In this subsection we consider DOA estimation of fixed
sources using the ULA. The data samples were simulated using
(1) with three sources at 10 , 40 , 55 and
the following signals ,
and , where the phases were
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independently and uniformly distributed in . In the
simulation with coherent sources, the sources at and were
the coherent ones (i.e., they had identical phases), whereas the
source at was uncorrelated to them. The noise variance was
varied to control the signal-to-noise ratio defined as

SNR dB

The following methods were used for DOA estimation :

: the periodogram (PER), see (35);
: the iterative adaptive approach (IAA), see [12];

: the multiple signal classification method (MUSIC), see
e.g., [1];

: SPICE, see (15), (19) as well as Remark 2 and [7];

: the enhanced SPICE or, for short, SPICE-plus
(SPICE+), see (44)–(46).

Note that IAA was shown in [12] to outperform the method of
[3] and its variations in the literature, which is why we selected
IAA for the present comparison. As a cross-check and for com-
parison’s sake we have also computed the SPICE+ estimates by
means of an SDP solver (see [5] for the latter). The so-obtained
estimates were identical (within numerical accuracy) to those
provided by the SPICE+ algorithm; however, as expected, the
SDP solver was either much slower or, worse, it could not be
executed for instance due to memory problems.

In Fig. 2, we show the average root mean-square errors
(RMSEs) of the DOA estimates obtained with in
1000 Monte Carlo runs, for several SNR values:

where denotes the estimate of in the th Monte Carlo
run. In this figure, the top plot shows the RMSEs for uncor-
related sources and the bottom plot shows the RMSEs for co-
herent sources. As can be seen from this figure, the PER esti-
mates of the DOAs have poor accuracy in all cases under study,
due to a significant bias (which does not decrease as the SNR
increases). Regarding IAA, this method provides competitive
estimates only for SNR 0 dB. The parametric method of
MUSIC, which requires knowledge on the number of sources
in the data, yields reasonably accurate DOA estimates in the
uncorrelated source case (at least for SNR 0 dB) but com-
pletely fails in the coherent source case (as expected). The pro-
posed methods of SPICE and SPICE+ give the best performance
in the cases considered: in particular, their threshold SNR ap-
pears to be lower by some 10 dB than the threshold SNR of IAA
and of MUSIC. For uncorrelated sources, SPICE+ is more ac-
curate than SPICE, whereas SPICE outperforms SPICE+ in the
coherent source case. From a computational standpoint SPICE+
converged faster than SPICE presumably due to the data-depen-
dent weights used by SPICE+.

B. Mobile Sources : DOA Tracking

In this subsection, we consider DOA estimation of mobile
sources using the NULA. The data samples were generated as-

Fig. 2. Estimation performance of PER, IAA, MUSIC, SPICE and SPICE+
(the ULA case): RMSE versus SNR for the DOA estimates obtained in 1000
Monte Carlo runs. (a) Uncorrelated sources. (b) Coherent sources.

suming two mobile sources, one moving linearly from 30 to
60 and the other from 60 to 30 , in steps of 0.03 , over a
course of 1000 data snapshots. The uncorrelated signals of these
two sources were given by and

, where the phases were independently and
uniformly distributed in .

In this example, only the methods , , and are
considered. At any given time instant , the sample covariance
matrix is formed from the most recent 100 data snapshots
and the DOA estimates are recomputed by each of the three
methods. As before, the SPICE methods, and , are
initialized with the PER estimate. Alternatively, one may
think of initializing the SPICE methods with their respective
estimates obtained from the previous data window; however,
as discussed in Section III-B, for global convergence SPICE
should be initialized with a dense estimate rather than a sparse
one. The SPICE methods were iterated only five times except
at where they were applied for the first time and were
iterated till convergence. We have also tried a larger number of
iterations, such as 20, but noticed no significant improvement
in the DOA estimates [compare Fig. 3(c) and (d)]. The SNR in
this simulation was 20 dB (however, very similar results were
obtained for SNR 10 dB and 0 dB).

Fig. 3 shows the plots of DOA estimates versus for the three
considered methods. In each plot, the estimates shown at any
time were obtained as the locations of the two largest peaks
in the spatial spectrum provided by the method in question.
As can be seen from the figure, PER performs poorly as it
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Fig. 3. Tracking performance of PER, SPICE and SPICE+ (the NULA case). The solid lines denote the trajectories of the true DOAs: (a) PER; (b) SPICE with
five iterations; (c) SPICE+ with five iterations; and (d) SPICE+ with 20 iterations.

cannot track either the source moving from 30 to 45 or the
one moving from 45 to 30 . Note that at each time instant,
the data window (made of the most recent 100 data snapshots)
comprises two sets of DOAs each with a width of 3 . For
instance, at , the data window will contain signals
with DOAs lying in the interval 39 42 and, respectively,
in 48 51 . PER often picks wrongly the two peaks only
from the set with larger DOAs. On the other hand, the SPICE
methods correctly pick the two peaks from both sets which
leads to the band-like appearance of the corresponding plots in
Fig. 3(b)–(d); observe that, as expected, the width of the bands
in these figures (measured along the DOA axis) is equal to 3 .
Note also that the true DOA trajectories are well approximated
by the upper edge of the bands in Fig. 3(b)–(d) corresponding
to the increasing DOA and by the lower edge of the bands
associated with the decreasing DOA—this behavior, which was
expected in view of the above discussion, is in fact quite stable
with respect to the SNR [in simulations not shown here, we
have observed that decreasing the SNR from 20 to 0 dB caused
only 1 DOA estimate, out of 2000, to lie outside bands similar
to those in Fig. 3(b)–(d)]. To provide further insight into this
type of behavior, a single source moving along a sinusoidal
trajectory was considered. Fig. 4 shows the DOA estimates
for this source obtained with SPICE+. It is clear from this
plot that the width of the band decreases till , where
it is nearly zero, and then starts increasing again; hence, as
expected, the width of the band is proportional to the slope
of the DOA variation. Furthermore in this case, too, the true
DOA trajectory is well approximated by the upper edge of the
band (for increasing DOA) and the lower edge (for decreasing
DOA).

Fig. 4. Tracking performance of SPICE+ for a sinusoidal trajectory (the NULA
case). The solid line denotes the true DOA trajectory.

APPENDIX A
SOME SDP AND SOCP FORMULATIONS

First, we show that the problem of minimizing (18), s.t.
, can be formulated as an SDP. The proof

that the same is true for (20) is similar and therefore its details
are omitted. Let

... (55)
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and let

(56)

Using this notation we can rewrite the function in (18) as

(57)

Let be auxiliary variables satisfying ,
or equivalently

(58)

Then the minimization problem under discussion can be stated
as

(59)

which is an SDP (as is a linear function of ) [4], [9].
Next, we show that (48) can be cast as an SOCP. Let

denote auxiliary variables that satisfy

(60)

Then simply observe that (48) can be rewritten as

(61)

which is an SOCP [4].
Finally, we show how to reformulate (53) as an SOCP. Let

still denote some auxiliary variables (but now only
of them) and constrain them to satisfy

(62)

Using we can restate (53) in the following form:

...

(63)

which, once again, is an SOCP.

APPENDIX B
EQUIVALENCE OF (18) AND (20)

Let and denote the minimization problems corre-
sponding to (18) and (20). Therefore

(64)

and

(65)

Note that we have replaced by 1 in the right-hand side of the
constraint in (65) for notational convenience (this replacement
has only a scaling effect on the solution of ). For complete-
ness, we will also consider the following problem obtained by
constraining the first term in (64) to one:

(66)

First, we prove the equivalence of and . By making use of
an auxiliary variable we can rewrite (65) and (66) as follows:

and (67)

and (68)

Let (note that ) and reformulate as

and (69)

where is made from . It follows from (67) and (69) that
if is the solution to then is the solution to ,
and thus the proof of the equivalence between and is
concluded.

Next, we consider and . By writing down the
Karush–Kuhn–Tucker conditions for it can be shown
that the two terms of the objective in (64) must be equal to one
another at the minimizing . A more direct proof of this
fact runs as follows. Assume that is the optimal solution
of and that at we have

(70)

for some ; note that the scaling factor in (70) must nec-
essarily be positive, which is why we wrote it as ; below we
will let denote the square root of . We will show in
the following that the previous assumption leads to a contradic-
tion : cannot be the solution to if . To do so let

and observe that, at , the two terms in the ob-
jective of are identical:

(71)

Making use of (70) and (71) along with the assumption that
is the solution to , we obtain the following inequality:

(72)

or, equivalently,

(73)
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which cannot hold, and hence the solution to must satisfy
(70) with . Using this fact we can reformulate as
follows:

and

(74)
or, equivalently (as ),

and (75)

where , as before, and is a new auxiliary
variable. Comparing (75) and (67) concludes the proof of the
equivalence of and .
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