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New Method of Sparse Parameter Estimation in
Separable Models and Its Use for Spectral Analysis

of Irregularly Sampled Data
Petre Stoica, Fellow, IEEE, Prabhu Babu, and Jian Li, Fellow, IEEE

Abstract—Separable models occur frequently in spectral anal-
ysis, array processing, radar imaging and astronomy applications.
Statistical inference methods for these models can be categorized
in three large classes: parametric, nonparametric (also called
“dense”) and semiparametric (also called “sparse”). We begin
by discussing the advantages and disadvantages of each class.
Then we go on to introduce a new semiparametric/sparse method
called SPICE (a semiparametric/sparse iterative covariance-based
estimation method). SPICE is computationally quite efficient,
enjoys global convergence properties, can be readily used in the
case of replicated measurements and, unlike most other sparse
estimation methods, does not require any subtle choices of user
parameters. We illustrate the statistical performance of SPICE by
means of a line-spectrum estimation study for irregularly sampled
data.

Index Terms—Irregular sampling, separable models, sparse pa-
rameter estimation, spectral analysis.

I. INTRODUCTION AND PROBLEM FORMULATION

L ET denote the available data vector (or snap-
shot), and consider the following model for :

(1)

where is a noise term, and are
the unknown parameters of the th signal component,

is a known function, and is the unknown number
of components. This type of model is a frequent occurrence in
numerous applications such as spectral analysis [1], [2], array
processing [3], radar imaging [4], [5], astronomy [6], [7], and
elsewhere [8], in all of which estimation of the unknown pa-
rameters in (1) is a basic goal. Note that in some of these ap-
plications, for instance in array processing, the number of avail-
able snapshots is larger than one. However, to keep the notation
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and explanations as simple as possible, we will first consider the
single snapshot case, but afterwards will also discuss briefly the
extension to the multisnapshot (also called replicated-measure-
ment) case.

The estimation methods associated with (1) can be catego-
rized in three large classes: parametric, nonparametric and semi-
parametric, see below for details.

A prominent member of the parametric class is the nonlinear
least squares (NLS) method that consists of minimizing the fol-
lowing criterion:

(2)

with respect to (for given ). Observe that the criterion
above depends quadratically on , which means that it can
be minimized explicitly with respect to these parameters (for
fixed ). In other words, can be separated out—and this
along with the fact that the signal components enter (1) through
separated terms give the name of separable models to (1) [8],
[9]. The NLS enjoys excellent statistical properties; in partic-
ular, under the normal white-noise assumption the minimiza-
tion of (2) produces the maximum-likelihood estimate that is
asymptotically statistically efficient. However, this is true only
if used in (2) is the “true” number of components and if (2)
can be globally minimized; and both these conditions are diffi-
cult to meet in practice (especially the global minimization of
(2) is a hard task).

At the other end of the method spectrum we find the non-
parametric class. The most basic method of this class is the
single-frequency least-squares (SFLS) method (which is also
known under other names, such as the periodogram or beam-
forming method, depending on the application). To explain this
method in general terms, let denote a fine grid that
covers , and assume that lie on (practically, close to) the
grid. This means that there exist such that

. Let

(3)

and also let

(4)

Using this notation we can re-write (1) as:

(5)
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where typically . The SFLS method estimates , in a
one-by-one manner, simply ignoring the presence of the other
possible signal components in (5)

(6)

where the superscript denotes the conjugate transpose and
denotes the Euclidean norm. Evidently, (6) does not

have the problems (indicated earlier) that affect the parametric
method of NLS. However, the price for the elimination of these
problems is poor statistical accuracy: SFLS suffers from local
and global leakage problems; the local leakage reduces the res-
olution by making it hard to distinguish between signal com-
ponents with closely spaced values of , whereas global
leakage leads to false-alarms, that is to large values of for
nonexistent components. Note that most (if not all) estimated
values in (6) will usually be different from zero, which
motivates the alternative name of dense sometimes used to des-
ignate the nonparametric methods. In fact in some applications
(e.g., radar imaging), in which the number of expected com-
ponents in (5) is rather large, a dense estimate of can be
preferable to a sparse estimate such as one provided by a para-
metric model. Consequently, there has been a significant interest
in devising nonparametric (or dense) estimation methods for
(1) that possess superior performance to the SFLS method. In
Section II we will describe briefly one such enhanced method,
called IAA (the iterative adaptive approach) [10], [11], which
eliminates almost completely the leakage problems of the SFLS
method in a fully data-adaptive manner (i.e., without requiring
the selection of user parameters).

An intermediate category of methods is the semiparametric
class. The sparse estimation methods form an important sub-
group of this class. These methods use the nonparametric data
model in (5) but, reminiscent of the parametric approach, they
seek to exploit the information that the vector

(7)

in (5) is sparse (i.e., it has only a few nonzero elements). An
archetypical sparse method consists of estimating by
solving the following -norm constrained LS problem [12],
[13]:

(8)

where stands for the norm, and is a threshold that
must be chosen by the user. The -norm constraint in (8) is what
induces the sparsity of the solution to (8) [12], which is a po-
tentially useful feature of this type of estimation methods, pro-
vided that their user parameters [e.g., in (8)] are well selected.
However this selection is by no means a simple task [clearly it
is related to the task of estimating in the parametric model
(1)], and quite typically the rules proposed for performing it de-
pend on quantities that are unavailable in applications (such as

the noise power, or the “true” value of ); see e.g., [13] for a re-
cent critical discussion on this aspect. As alluded to above, most
sparse estimation methods share this drawback with the para-
metric methods. However, there are a few sparse methods that
are fully data adaptive—we will review one such method called
SLIM (sparse learning via iterative minimization) [14], [15] in
Section II. These user parameter-free sparse methods have an
edge over the parametric ones (which require the selection of

), despite the fact that they cannot be possibly more accurate
statistically nor are they necessarily more efficient computation-
ally than the best methods of the parametric class. Additionally,
many sparse estimation methods are numerically more reliable
than the theoretically more accurate parametric methods (whose
global convergence can rarely be guaranteed).

In this paper we will introduce a semiparametric/sparse
estimation method for the separable model in (1) [see also
(5)]. This method will be obtained using a covariance-based
fitting criterion, which was apparently never employed before
to derive sparse estimation methods, and will be designated by
means of the acronym SPICE (semiparametric/sparse iterative
covariance-based estimation). SPICE has several useful fea-
tures that are shared by very few (if any) sparse estimation
methods : i) it is fully data adaptive (i.e., its operation does
not require the subtle selection of any user parameters); ii) it
enjoys global convergence properties; and iii) its use in the
multisnapshot case is straightforward. Following the theoretical
derivation and analysis of SPICE, we describe the use of this
method for the spectral analysis of irregularly sampled data and
make use of a numerical example to illustrate the performance
achievable by SPICE in the said application and compare this
performance with that of SFLS, IAA, and SLIM.

II. THE COMPETING METHODS: IAA AND SLIM

Let us assume that

...
...

. . .
...

(9)

and that the phases of are independently and uniformly
distributed in . Then the covariance matrix of has the
following expression:

...
...

. . .
...

(10)

where

(11)
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(12)

The assumption that the noise components in different measure-
ments are uncorrelated to one another, which led to (9), is quite
reasonable in most applications. On the other hand, the assump-
tion that and are uncorrelated for does not always
hold. However, all methods considered in this paper are robust
to this assumption, and thus they work well even in the case
when some signal components are correlated to one another, as
we explain in the next subsection.

A. IAA

Let denote the estimate of at the th iteration, and
let be the matrix made from . Then IAA updates
the powers by means of the following iterative process [10] and
[11]:

(13)

The initial estimates can be obtained, for example,
using the SFLS method [see (6)]

(14)

The power estimation formula (13) has satisfactory properties
even in those cases in which the covariance matrix of does not
have the assumed structure due to, for example, coherent signal
components (i.e., components with the same phase). To explain
why this is so, let us assume that two components, and

, in are coherent. Then their covariance matrix is not

(15)

as assumed in (10), but

(16)

However this difference between (15) and (16) does not cause
any serious problem to (13). Observe that (13) can be rewritten
as (omitting the iteration index for simplicity)

(17)

The “filter” (or linear combiner) in (17) passes without
distortion the signal component corresponding to . At the
same time it attenuates (or even annihilates, depending on their
powers) the signal components corresponding to and

, as it should (see [1] for details on this aspect). For
the filter will attenuate any other component with

, including (and similarly, for ). Note that
a similar argument also applies to the methods of SLIM and
SPICE which are yet to be discussed: indeed, as we will see,
the estimation formulas of these methods comprise a filter that
is proportional to the in (17). This fact explains why these
methods as well are robust to the assumed structure of in
(10).

B. SLIM

This method operates under the assumption that
(which is a reasonable assumption in some applica-

tions). The updated estimates for SLIM are iteratively obtained
as follows [14] and [15]:

(18)

The initial estimates for are obtained as for IAA,
whereas is typically chosen as a small positive number
(e.g., ). Even though derived in the cited papers
in a different way, SLIM is similar to the regularized FOCUSS
(focal underdetermined system solver) algorithm introduced in
[16]. The main difference between these two methods consists
in the way they estimate : SLIM computes the estimate of
iteratively as in (18), while FOCUSS uses a fixed estimate of

in all iterations that is obtained by one of several possible
heuristical methods (see [16]).

Both IAA and SLIM are known to converge locally to the
minimum value of their corresponding criterion (see the proof
of local convergence for IAA in [17] and for SLIM in [14]).
However little is known about the global convergence of these
algorithms, or in effect about the convergence of their associated
sequences.

The main difference between these two algorithms is that IAA
is a nonparametric method (which provides a dense power esti-
mate), whereas SLIM is a semiparametric method (whose result
is a sparse power estimate, due to the use of sparsity-inducing
parameter priors that lead to an implicit norm constraint similar
to the one in (8), see [14] for details). In particular, the semi-
parametric character of SLIM makes its extension to the multi-
snapshot case a bit more difficult than that of IAA for which the
extension is more or less straightforward (this difference is due
to the fact that for a sparse method, unlike for a dense one, the
estimates of for different snapshots should maintain
the same sparsity pattern versus the snapshot index); we refer to
[17] for details on these extensions.
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III. THE PROPOSED METHOD: SPICE

The following is a weighted covariance fitting criterion that
can be used for the purpose of parameter estimation (see, e.g.,
[18], [19], and the references therein; also see [20] and [21])

(19)

where denotes the Frobenius norm for matrices, and
is the Hermitian positive definite square root of . Admit-
tedly, the use of (19) makes more sense in the multisnapshot
case than in the single snapshot one [in which the sample covari-
ance matrix is just , as used in (19)], but the minimization of

can yield satisfactory estimates even in the latter case (as we
explain later on in this section). A simple calculation shows that

(20)

where [see (10)–(12)]

(21)

(and where is the expectation operator). It follows from (20)
and (21) that the minimization of is equivalent to the mini-
mization of the function:

(22)

As shown next, this is a convex problem.

A. Convexity of the Problem

The following equivalences can be readily verified:

(23)

The minimization problem in (23) [where , see (10)]
is a semidefinite program (SDP) [22] which is well known to be
convex. The convexity of the original problem therefore follows.

There are several well-documented software packages for
solving an SDP such as (23) (see, e.g., [23]). However SDP
solvers are in general rather computationally intensive (as
an example, using such a solver for (23) with and

takes about 1 hour on a relatively powerful PC).
Consequently, we do not recommend solving the SDP in (23)
as the preferred method for estimating the powers , and
suggest a different line of attack in the next subsection.

B. Derivation of SPICE

The literature on optimal experiment design contains a host
of results on the minimization of functions of the form of our

, under the constraints that and
; see, e.g., [24], [25], and the many references therein. In order

to make use of these results, particularly those of [24] (which in-
spired the derivation of SPICE below), we consider a reformu-
lation of the problem introduced above. Specifically, it follows
from (21) that is an unbiased and consistent (in ) esti-
mate of . Based on this observation we will es-
timate the powers by solving the following linearly constrained
minimization problem, instead of minimizing the in (22):

(24)

It can be shown ([20]) that the problems (22) and (24) are equiv-
alent in the sense that the solution to (22) is a scaled version of
the solution of (24). Note that (24) is also a convex problem, see
the previous subsection. Additionally note that the constraint in
(24) is of the (weighted) -norm type, and therefore it is ex-
pected to be sparsity inducing for the solution to (24) (see, e.g.,
[12], [13], and [16]).

Let be such that , and let (as-
suming to simplify the explanations; to accommodate
the case of , for some values of , a pseudoinverse has to
be used instead of the matrix inverse below, see [24])

(25)

The minimization of with respect to , under the constraint
, yields (see Appendix A for a proof)

(26)

(27)

The important consequence of this result is that the minimiza-
tion of with respect to and results
in the same as the minimization of (24). The usefulness
of this observation lies in the fact that the minimization of the
augmented function can be conveniently done by means of a
cyclic (aka alternating) algorithm that consists of iterating the
following steps until convergence:

Step 0. Compute initial estimates of , e.g., by using
(14).
Step 1. With fixed at their most recent estimates, min-
imize with respect to . The minimizing
matrix is given by (26).
Step 2. With fixed at its most recent value, minimize
with respect to . The
solution of this step can also be obtained in closed form, as
detailed below.

Let

(28)

be the matrix in (26) at the th iteration of the algorithm, and
let

(29)



STOICA et al.: NEW METHOD OF SPARSE PARAMETER ESTIMATION 39

TABLE I
THE SPICE ALGORITHM

Then the minimization problem that needs to be solved in Step
2 of the above algorithm, at its th iteration, is

(30)

where is the th element of the vector viz.

(31)

By the Cauchy-Schwartz inequality we have that

(32)

It follows immediately from (32) that the solution to (30), and
hence the solution to Step 2 of the cyclic algorithm, is given by

(33)

Inserting (31) into (33) we get the following compact expression
for the iterative power updates of the SPICE algorithm :

(34)

Interestingly, the above equation has the same multiplicative
form as the power update formula for SLIM, see (18), whereas
the updating equation for IAA has a different form. Further-
more, the updating formulas for all three methods depend on

, although the power to which this quantity is raised
depends on the method (1st power for SPICE and 2nd power for
IAA and SLIM).

With regard to implementation, SPICE and SLIM can be im-
plemented quite efficiently by first computing
(possibly by means of a conjugate-gradient algorithm, see, e.g.,
[26]) and then evaluating the scalar products (for

). The implementation of IAA, on the other hand,
requires comparatively more computations due to the need for
evaluating the denominator in (13) for (the
reader is reminded that usually). For easy reference,
the SPICE algorithm is summarized in Table I.

C. Some Theoretical Properties

Because SPICE monotonically decreases the objective func-
tion (due to its cyclic operation) and since the minimization
problem it solves is convex, we can expect that the algorithm
has global convergence properties. In effect, it can be shown
that under reasonably weak conditions (essentially requiring
that and that the matrix remains positive
definite as increases), the limit points of SPICE power se-
quence, (34), are global minimizers of subject to the
constraints in (24) [24]. In other words, the SPICE algorithm
is globally convergent for any initial value that belongs to the
interior of the set , which is usually the case [e.g.,
for (14)]. Despite the said initialization, the limit points of
the algorithm tend often to be on the boundary of the above
set, a fact in agreement with the previously made observation
that SPICE is a sparse estimation method (see the comments
following (24))1.

The theoretical analysis of the global minimum points of
appears to be difficult. Empirical experience with the

SPICE algorithm suggests that typically the locations of the
dominant peaks of the true power spectrum are well determined,
but also that the corresponding power values require some form

1We believe that extensions of Elfving’s theorem as well of Caratheodory
representation result (see, e.g., [27]) to the present complex-valued data model,
which is a topic left for future research, will shed more light on the sparse char-
acter of SPICE power estimates.
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of correction. To understand this type of behavior, we consider
the noise free case in which [see (1) with ]

(35)

for some vector and a matrix that is
a block of . Furthermore, let (the
true value of which is in the present case), let all the
other powers in be zero except for those corresponding to the
columns of , and let

...
...

. . .
...

(36)

be the diagonal matrix corresponding to the nonzero powers.
Then, by the matrix inversion lemma

(37)

which implies that

(38)

In many cases of interest as ; for
example this happens in the spectral analysis application (see
Section IV), in which —this is assumed in the fol-
lowing. So let us assume for simplicity that the term
in (38) can be neglected. Then the minimization problem in (24)
becomes, approximately

(39)

the solution to which is (by a calculation similar to that in (32)):

(40)

(41)

where

(42)

is a normalizing constant. It follows from (41) that the powers
(at the true locations) which minimize the SPICE criterion are
proportional to the square root of the true powers

(43)

Note, however, that for we have and
hence the power is correctly determined in this case: .

Another way to realize that (43) is true is based on (29) and
(33). For given (and hence ), the in (29) (we omit
the index to simplify the notation) are readily recognized to
be estimates of the signal amplitudes as well as of the noise
term in (5); now the in (33) are proportional to :
therefore obtained from SPICE must be (scaled) estimates
of the square root of the powers, as are. It also follows
from this discussion that, whenever accurate determination of
the heights of the power peaks (not only of their locations) is
required, we can proceed in the following way. First we use the

obtained from SPICE (at convergence) to reestimate the
powers

(44)

Note that the obtained from (29) would be the best linear
unbiased estimates if used in (29) were the true power matrix
(or a scaled version thereof). However, as explained above, the
powers produced directly by SPICE do not satisfy this condi-
tion, which means that the accuracy of (44) might not be satis-
factory. To improve the estimation performance of (44) we use it
three times to reestimate the powers : each time we use the most
recent power estimates to build , compute with (29), and
then obtain enhanced power estimates via (44).

Remark 1: Once the locations of the dominant power peaks
are estimated with SPICE, their heights can be determined by
means of several other methods (see, e.g., [28]), besides the
one outlined above. Of these possible methods, we have tested
the one based on multiple-frequency least squares (MFLS) and
found out that its performance in the spectral analysis applica-
tion presented in Section IV was quite satisfactory. However,
we have chosen to omit the details on MFLS and to focus on
the method based on (29) and (44), because the latter method is
inherently intertwined with SPICE, unlike MFLS.

Before concluding this discussion, we remark on the fact that
in the previous analysis we let where and
were unknown, but was the matrix made from the true signal
vectors present in [see (1)]. An interesting question
is what happens if we replace in by a matrix that is also
unknown, let us say : will the minimization of the
SPICE criterion yield the true solution , or at least a close
approximation of it? As shown in Appendix B the answer to this
question is positive, therefore lending support to the previously
asserted fact that the locations of the true power spectrum peaks
are well determined by SPICE.

D. Some Extensions

In some applications the powers satisfy certain known
linear relationships. For example, we might know that the noise
variance in the different measurements is constant, i.e.

(45)

The extension of SPICE to include the above information is im-
mediate. We only need to observe from (28) and (29) that, under
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(45), the term that multiplies in (30) is

(46)

Consequently the updating formulas for SPICE become

(47)

(48)

where

(49)

and

(50)

Similarly to the discussion in the previous subsection, when-
ever accurate estimation of the powers is necessary, we can use
(29) and (44) to obtain refined estimates of and of

(51)

As outlined before we repeat three times the calculation in (51),
each time using the latest estimates of and to deter-
mine via (29). This is the SPICE power estimation
formula that will be used in the numerical study in Section IV.

In other applications the power spectrum is known to possess
certain symmetries. A prime example of this situation is the pro-
cessing of real-valued data, in which case constraints of the type

(52)

for certain values of are known to hold. Modifying SPICE
to take (52) into account can be done as indicated above for the
similar constraint in (45), and therefore we omit the details of
this extension.

In the rest of this subsection we explain how to extend SPICE
to the case of multiple snapshots. Let denote the
matrix whose columns are the available data snapshots, and
let

(53)

The weighted covariance fitting criterion associated with (53) is
given by [compare to (19)]

(54)

where

(55)

An extended version of the SPICE estimation criterion, see (24),
follows easily from the above equation:

(56)

where

(57)

The derivation of the SPICE algorithm for the extended problem
in (56) parallels that in Section III-B for the case of .
Consider the function

(58)

For fixed , the matrix that minimizes (58)
is still given by (26)

(59)

and it is still true that

the original objective in (56) (60)

Next, observe that the function in (58) can be rewritten (for fixed
) as

(61)

where now are the diagonal elements of the matrix

, i.e.

(62)

Owing to the perfect analogy between (61) and the (30) corre-
sponding to the case , we conclude that the extended
algorithm has exactly the same form as the basic SPICE algo-
rithm, the only modification being the different expressions for

and for [see (57) and (62)]. Note also that when-
ever the obtained from SPICE are usually accu-
rate estimates of the true powers and therefore, unlike in the case
of , we can use them directly as power estimates—which
is what we will do in the numerical study of the next section.

IV. APPLICATION TO SPECTRAL ANALYSIS AND NUMERICAL

PERFORMANCE STUDY

Let , be the th sample in a set
of measurements performed at possibly irregularly spaced
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Fig. 1. (a) The sampling pattern, for � � ���, mimicking a real-life case in astronomy [31]. (b) The corresponding spectral window.

times . In spectral analysis applications the vectors
correspond to sinusoidal components

... (63)

[observe that in this case is a constant; see (21),
(22) for equations in which appear]. The interval
for the angular frequency, viz. , in which one can conduct spec-
tral analysis without any aliasing problem, can be determined
from the so-called spectral window, , as
the largest range for in which the only peak with height equal
(or close) to 1 is at [29], [30]. Let
denote the so-obtained interval, or the subinterval of it that is of
interest. We use a uniform grid to cover , with a step
equal to (note that is the
best expected resolution in the class of nonparametric methods
[1]; because we can hope for a better resolution in the sparse-es-
timation method class, we choose a five-times-smaller step for
the frequency grid).

We will consider and the sampling pattern shown
in Fig. 1(a). This sampling pattern, which will be fixed in the
simulation runs, mimics the type of patterns encountered in cer-
tain applications of spectral analysis in astronomy (see [31], [7])
where data collection depends on many factors and therefore
is typically performed at rather irregular time intervals. For the
sampling pattern in question we selected . The spec-
tral window is shown in Fig. 1(b) from which one can see that
the only peak with height equal (or close) to 1 in the frequency
range of is at , as required. The grid size is
chosen as .

The data samples were simulated using (1) and (63) with

, and , where the
phases were independently and uniformly distributed
in . The disturbance term, , was normal white noise with

mean zero and variance ; the noise variance will be varied to
control the signal-to-noise ratio defined as

The following methods will be used for spectrum/parameter es-
timation:

: SFLS.
: IAA.
: SLIM.
:

.
:

.
We will not consider SPICE with different as it is un-

likely to provide better performance in the present case in which
the noise elements have the same variance. However, note that
in some applications (such as astronomy) the noises affecting
different measurements can indeed have different variances, in
which case SPICE with unconstrained should be used. Re-
garding , we note that replicated measurements are rarely
available in spectral analysis applications. However in other ap-
plications, such as in array processing, they are a common oc-
currence and this is the reason for including in the present
comparison. As the number of snapshots increases, the accuracy
of improves significantly; we use in the fol-
lowing. We note in this context that IAA, and probably SLIM
too, can also be extended to the multisnapshot case [17]. How-
ever, the said extensions are not as well motivated as the pro-
posed extension of SPICE, and on that basis they will not be con-
sidered in this numerical study. The stopping criterion for the
iterative methods, namely, IAA, SLIM and SPICE, is

, where denotes the estimate of the
power vector at the th iteration. The average number of iter-
ations and the average computation time (on a 2.26 GHz, 4 GB
PC) for these methods in the present example (with
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Fig. 2. Superimposed spectra obtained with the methods under consideration in 100 Monte Carlo runs, ��� � �� dB. The circles in the plots indicate the true
value of the powers. (a) SFLS. (b) IAA. (c) SLIM. (d) ���	
 . (e) ���	
 .

dB) are as follows: IAA—940 iterations and 158 sec, SLIM—20
iterations and 3 sec and —180 iterations and 20 sec.

In Fig. 2 we display, in a superimposed manner, the power
spectrum estimates obtained with - in 100 Monte Carlo
(MC) runs, for dB. It can be inferred from the plots
in this figure that SFLS suffers from heavy leakage problems;
as a result the peak at is buried completely in “clutter,” and
the frequencies and are estimated with a bias that can be

seen clearly from the insert. IAA, on the other hand, resolves the
two closely spaced peaks without any bias but misses the weaker
component at possibly due to ill-conditioning of the matrix
caused by irregular sampling (note that IAA, in general, works
reasonably well for uniform sampling schemes). The semipara-
metric method SLIM yields a sparse spectrum but misses the
true peaks in some MC runs, and also overestimates the powers
in some realizations (note that some of the peaks at and
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Fig. 3. Histograms of (a)–(b) frequency estimates and (c)–(d) power estimates
for SFLS at two SNR values, obtained from 100 Monte Carlo runs. The dashed
lines show the true frequencies and the true powers. (a) ��� � � dB. (b)
��� � �� dB. (c) ��� � � dB. (d) ��� � �� dB.

Fig. 4. Histograms of (a)–(b) frequency estimates and (c)–(d) power estimates
for IAA at two SNR values, obtained from 100 Monte Carlo runs. The dashed
lines show the true frequencies and the true powers. (a) ��� � � dB. (b)
��� � �� dB. (c) ��� � � dB. (d) ��� � �� dB.

in Fig. 2(c) are larger than 200 (see the insert); however we cut
them off at 200 in order to be able to use the same scale for all
plots in Fig. 2). , on the other hand, locates all three
peaks in most MC runs and also gives more accurate power es-
timates. Finally , yields a nearly ideal spectrum.

In Figs. 3–7 we show the histograms, obtained from 100
MC runs, of the frequency and power estimates obtained with

- for two different values of SNR. For all methods the
frequency estimates are obtained as the locations of the three
largest peaks of the corresponding estimated spectrum and the
power estimates are computed at the estimated frequencies. In
the histogram for power estimates, the values were saturated
at 300 (i.e., larger values are not shown to focus on the power
range of interest). Similarly, in the histogram for frequency
estimates, the values were saturated at 0 (i.e., negative values
are not shown). As expected, SFLS works poorly at low SNR
and even at dB it fails to locate the component
at (instead, in all 100 MC runs, it picked a spurious peak
to the right of , which is an artifact due to the sampling
scheme). Note also that the SFLS power estimates at and
are significantly overestimated. IAA gives poor frequency and

Fig. 5. Histograms of (a)–(b) frequency estimates and (c)–(d) power estimates
for SLIM at two SNR values, obtained from 100 Monte Carlo runs. The
dashed lines show the true frequencies and the true powers. (a) ��� � � dB.
(b) ��� � �� dB. (c) ��� � � dB. (d) ��� � �� dB.

Fig. 6. Histograms of (a)–(b) frequency estimates and (c)–(d) power estimates
for SPICE at two SNR values, obtained from 100 Monte Carlo runs. The
dashed lines show the true frequencies and the true powers. (a) ��� � � dB.
(b) ��� � �� dB. (c) ��� � � dB. (d) ��� � �� dB.

power estimates at the low SNR, which is primarily due to the
ill-conditioning of caused by the irregular sampling scheme;
however, it gives satisfactory frequency and power estimates
at the SNR value of 20 dB. The accuracy of the frequency and
power estimates obtained with SLIM is relatively poor at both
SNR values considered; this is mainly due to the fact that SLIM
gives a too sparse spectrum and hence fails to detect some of
the components present in the data. The frequency estimation
performance of is superior to that of SFLS, IAA, and
SLIM, at both low and high SNR values. The power
estimates are also reasonable, despite the fact that they are
somewhat biased downwards at and . Finally
gives very accurate frequency estimates and precise power
estimates for both SNR values.

V. CONCLUDING REMARKS

The SPICE (semiparametric/sparse iterative covariance-
based estimation) method introduced in this paper enjoys
global convergence properties, is user parameter free, can be
easily used in the multisnapshot case, and has a small compu-
tational complexity. There are very few (if any) other sparse
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Fig. 7. Histograms of (a)–(b) frequency estimates and (c)–(d) power estimates
for SPICE at two SNR values, obtained from 100 Monte Carlo runs. The
dashed lines show the true frequencies and the true powers. (a) ��� � � dB.
(b) ��� � �� dB. (c) ��� � � dB. (d) ��� � �� dB.

estimation methods that share all these useful features. In our
opinion the capability of SPICE to operate in noisy scenarios
without requiring prior information about the noise variance
or the sparsity index of the parameter vector as well as its
simple extension to multisnapshot situations are particularly
useful characteristics. Regarding the statistical properties of
the parameter estimates provided by SPICE, the proposed
method was shown to outperform two competing methods in a
numerical spectral analysis application.

Separable models appear in many branches of science and
engineering, and we are planning to investigate the use of
SPICE in several other applications, besides spectral analysis.
Fully understanding the theoretical properties of SPICE also
requires some additional research work. For example, as men-
tioned briefly in the footnote to the discussion in Section III-C,
extensions of certain representation results for solutions to
SPICE-type optimization problems are likely to shed further
light on the computational and statistical properties of SPICE
as well as on its relationship to the group of sparse estimation
methods based on -norm minimization principles. We leave
working out such theoretical extensions and providing a more
detailed analysis of SPICE to a possible future publication.

APPENDIX A
PROOF OF (26) AND (27)

To prove (26) we need to show that

(64)

for any that satisfies . However (64) is equivalent to

(65)

and (65) evidently holds true. Therefore (26) is proved, and (27)
follows by substitution.

APPENDIX B
ON THE MINIMIZERS OF THE SPICE CRITERION IN THE

NOISE-FREE CASE

Let be given by (35), and let

(66)

where is as in (36), and is a matrix, made from
columns of , that has full column rank. A straightforward
calculation yields

(67)

where is the orthogonal projector matrix onto the null space
of . Similarly to what we have done in Section III.C we can
neglect the term in (68), as it is typically much smaller
than . Therefore we have (approximately)

(68)

The minimization of (68) with respect to
, can be done as in (30)–(33). The result of this

minimization is the following function, which is to be mini-
mized with respect to and

(69)

with and

(70)

where is the th element of the vector .
Next, we consider the minimization of (69) with respect to

, for fixed . The corresponding equation for the
stationary points of is

(71)
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Because does not lie in , the only
possible stationary point is

(72)

The second-order derivative of

(73)

is positive for any , and therefore (72) is a minimum
point for . The corresponding minimum value of , as a func-
tion of , is given by

(74)

The exact minimization of the above function with respect to
does not appear to lead to a simple closed-form solution. How-
ever, an approximate solution can be obtained as follows. Under
quite general conditions as increases, whereas

(unless ). It follows from this observation
that, for a reasonably large value of , the minimization of in
(74) is much more important than the minimization of (note
that in (74) is just a constant). Because for , this
means that the true locations of the power peaks are well deter-
mined via the minimization of the SPICE criterion with respect
to , which was the fact to be shown.
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