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Abstract—A new array geometry, which is capable of signif-
icantly increasing the degrees of freedom of linear arrays, is
proposed. This structure is obtained by systematically nesting two
or more uniform linear arrays and can provide � �� degrees
of freedom using only physical sensors when the second-order
statistics of the received data is used. The concept of nesting is
shown to be easily extensible to multiple stages and the structure
of the optimally nested array is found analytically. It is possible to
provide closed form expressions for the sensor locations and the
exact degrees of freedom obtainable from the proposed array as a
function of the total number of sensors. This cannot be done for
existing classes of arrays like minimum redundancy arrays which
have been used earlier for detecting more sources than the number
of physical sensors. In minimum-input–minimum-output (MIMO)
radar, the degrees of freedom are increased by constructing a
longer virtual array through active sensing. The method proposed
here, however, does not require active sensing and is capable of
providing increased degrees of freedom in a completely passive
setting. To utilize the degrees of freedom of the nested co-array, a
novel spatial smoothing based approach to DOA estimation is also
proposed, which does not require the inherent assumptions of the
traditional techniques based on fourth-order cumulants or quasi
stationary signals. As another potential application of the nested
array, a new approach to beamforming based on a nonlinear
preprocessing is also introduced, which can effectively utilize the
degrees of freedom offered by the nested arrays. The usefulness of
all the proposed methods is verified through extensive computer
simulations.

Index Terms—Beamforming, co-array, direction-of-arrival
(DOA) estimation, Khatri Rao product, minimum redundancy
array, nested arrays, spatial smoothing.

I. INTRODUCTION

A NTENNA arrays perform spatial sampling of impinging
electromagnetic waves which are used to perform im-

proved detection of the source signal or estimate its spatial
signature. Direction-of-arrival (DOA) estimation and beam-
forming are two major applications of the antenna array.
However, both of them have been mostly confined to the case
of uniform linear arrays (ULA) [1]. The number of sources
that can be resolved with a element ULA using traditional
subspace based methods like MUSIC [2] is . In this
paper, we explore the class of nonuniform arrays and propose
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a novel array structure which is capable of providing a dra-
matic increase in the degrees of freedom (DOF) and hence can
resolve significantly more sources than the actual number of
physical sensors. We call this class of arrays as “nested arrays”
because they are obtained by combining two or more ULAs
with increasing intersensor spacing. We shall demonstrate that
using only second-order statistics of the impinging sources, it
is possible to obtain DOF from only physical
sensors.

In earlier works, the problem of detecting more sources than
sensors has been addressed in different ways. In [3] and [4],
it was shown that through the use of minimum redundancy ar-
rays [9] and by constructing an augmented covariance matrix,
degrees of freedom can be improved. However, the constructed
augmented covariance matrix is not positive semidefinite for fi-
nite number of snapshots (and hence violates the condition for
being a covariance matrix.) In [5], [6], a transformation of this
augmented matrix into a suitable positive definite Toeplitz ma-
trix was suggested and an elaborate algorithm was provided to
construct this matrix. However, there are two issues with this ap-
proach. To gain more degrees of freedom required for detection
of more then sources with sensors, they rely on the class
of minimum redundancy arrays (MRAs), for which, unfortu-
nately, there is no closed form expression for the array geometry
and achievable degrees of freedom for a given . The optimum
design of such arrays is not easy and in most cases, they are
restricted to computer simulations or complicated algorithms
for sensor placement [7], [8], [10]–[12]. Also, the algorithm
for finding the suitable covariance matrix corresponding to the
longer array is a lengthy and complicated iterative algorithm,
which converges only to a local optmimum [5], [6]. In [13],
the use of fourth-order cumulants was suggested to completely
remove the Gaussian noise term and perform better DOA esti-
mation. It was later shown that through the use of fourth-order
cumulants, one can also achieve significant increase in degrees
of freedom [14]–[16]. But one weakness of this approach is
that it is restricted to non-Gaussian sources. Recently, using the
concept of Khatri-Rao (KR) product and assuming quasi sta-
tionary sources, it has been shown that one can identify up to

sources using a element ULA [17] without computing
higher-order statistics. It is to be noted that using the augmented
array approach of [3] or with the construction of suitable posi-
tive definite Toeplitz matrices as done in [5], it will not be pos-
sible to obtain this many degrees of freedom using a ULA. But
this method, requiring quasi stationary sources, is not applicable
to stationary sources. In [18], degrees of freedom were increased
by generating a virtual array using a MIMO radar. However, the
generation of the virtual array needs active sensing, i.e., both
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transmit and receive antennas, and is not applicable to the case
of passive sensing.

In this paper, we develop a new signal model based on the
concept of difference co-array in Section II which will help
us in performing array processing with increased degrees of
freedom in a completely passive scenario. The co-array concept
has previously been treated for specific array geometries in [19]
and [20]. In the light of the co-array, we shall compare the earlier
methods to the more recent one based on K-R product, and bring
to light some important differences between them. In Section IV,
we propose our nested array structure which can greatly increase
the degrees of freedom of the corresponding co-array. We also
extend the idea of nesting to multiple levels and a combinatorial
optimization problem is next solved to deduce the optimum
nesting strategy. As we shall discuss, the extension of the con-
cept of nesting to more than two levels (say levels with
sensors in each level) can easily provide corresponding increase
in achievable degrees of freedom to ( ) when higher than
second-order statistics ( th-order statistics) are employed.
In comparison to aforementioned existing approaches, our
proposed method has several advantages. It will be shown in
Section IV that the nested array is extremely easy to construct
and it is possible to provide exact closed form expressions for the
sensor locations and the degrees of freedom for a given number
( ) of sensors, unlike the MRAs used in [3], [5], and [6]. Also,
to alleviate the weaknesses of [13] and [17] discussed before,
we shall propose a novel spatial smoothing based technique in
Section V which utilizes only second-order statistics to exploit
the degrees of freedom offered by the array and works well even
for stationary sources. Our technique constructs a suitable co-
variance matrix (which we shall refer to as the spatially smoothed
matrix) corresponding to a longer array on which subspace based
methods can be applied directly to perform detection estimation
of more sources than sensors. Unlike the augmented matrix in
[3], the spatially smoothed matrix is guaranteed to be positive
semidefinite for any finite number of snapshots and, hence, this
spatial smoothing technique constructs a suitable candidate for
the covariance matrix of the longer array without resorting to
the elaborate iterative techniques adopted in [5] and [6]. Also,
unlike MIMO radar, the enhancement in degrees of freedom is
achieved entirely through passive sensing. An important advan-
tage of this approach is that, unlike MIMO radar, the increased
degrees of freedom can also be used to suppress the jammers. In
MIMO radar, since the jammers do not “see” the virtual array,
the increased degrees of freedom provided by the virtual array
cannot be directly used to null the jammers. As another potential
application of the new signal model with nested array, a new ap-
proach to beamforming is proposed in Section VI, which directly
makes use of the degrees of freedom offered by the co-array.
This beamforming spatially filters the powers of the sources
(instead of their amplitude) and hence it is inherently nonlinear
in nature. Another major advantage of the proposed approach
to beamforming is that, assuming perfect knowledge of the
signal covariance matrix, it can eliminate noise, which is never
possible using conventional linear approach to beamforming. It
should be pointed out that the proposed spatial smoothing based
method as well as the beamforming are applicable to any array
whose difference co-array is a filled ULA and hence they can

be applied even to MRAs. In Section VII, extensive simulations
are performed to verify all the proposed techniques and compare
them against the conventional methods. Finally, Section VIII
concludes the paper.

Notations

Matrices are denoted by capital letters in boldface (e.g., ).
Vectors are denoted by lowercase letters in boldface (e.g., ).
Superscript denotes transpose conjugate, whereas superscript

denotes conjugation without transpose. The symbol denotes
the Khatri-Rao product [1] between two matrices of appropriate
size and the symbol is used to denote the left Kronecker
product [1, p. 1353].

Definitions and Signal Model Based on Difference Co-Array

Consider a element possibly nonuniform linear antenna
array. Let be the 1 steering vector corresponding to
the direction whose th element is . The sen-
sors are assumed to be placed on a linear grid with denoting
the position of the th sensor, which is an integer multiple of
the smallest spacing in the underlying grid. The carrier wave-
length is denoted by . Let us assume narrowband sources
impinging on this array from directions
with powers , respectively. Hence the re-
ceived signal is

(1)

where denotes the array man-
ifold matrix and denotes the
source signal vector. The noise is assumed to be tempo-
rally and spatially white, and uncorrelated from the sources. We
also assume the sources to be temporally uncorrelated so that
the source autocorrelation matrix of is diagonal. Then

. . .
(2)

Now, following [17], we vectorize to get the following
vector:

(3)

where and
with being a column vector of all zeros except a 1 at the
th position. Comparing it with (1), we can say that in (3)

behaves like the received signal at an array whose manifold is
given by where denotes the KR product. The equiv-
alent source signal vector is represented by and the noise
becomes a deterministic vector given by . The distinct
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rows of behave like the manifold of a (longer) array
whose sensor locations are given by the distinct values in the
set where denotes the position
vector of the th sensor of the original array. This array is pre-
cisely the difference co-array of the original array [19]. Hence
instead of (1), we can apply DOA estimation to the data in (3)
and work with the difference co-array instead of the original
array. The difference co-array thus occurs naturally in problems
involving second-order statistics of the received signal. Even the
methods based on fourth-order cumulants end up exploiting the
degrees of freedom of the difference co-array as was pointed out
in [14]–[16].

II. THE CO-ARRAY PERSPECTIVE

In this section, we shall first briefly discuss the concept of
co-array along with its important properties and then compare
the achievable degrees of the different source localization
methods discussed earlier, by explaining to what extent those
algorithms can exploit the degrees of freedom provided by the
co-arrays.

Definition 1: (Difference Co-Array): Let us consider an array
of sensors, with denoting the position vector of the th
sensor. Define the set

(4)

In our definition of the set , we allow repetition of its elements.
We also define the set which consists of the distinct elements
of the set . Then, the difference co-array of the given array is
defined as the array which has sensors located at positions given
by the set .

The number of elements in the difference co-array (given by
the set ) directly decides the distinct values of the cross cor-
relation terms in the covariance matrix of the signal received by
an antenna array. Using these distinct cross correlation terms
judiciously in different ways, one can substantially increase the
number of sources that can be detected by the array. Each such
technique actually amounts to using a part or whole of the re-
sulting difference co-array, instead of the original array, to per-
form the DOA estimation. Of course, the maximum degrees of
freedom that can be attained is limited by the number of ele-
ments present in the co-array. There is a related concept of “sum
co-array” which we do not consider here as it does not arise nat-
urally in computation of the covariance matrix of the received
signal.

Definition 2: (Weight Function): Define an integer valued
function such that
of in , , where is the set of positive integers. The
weight function denotes the number of times occurs.

A. Properties of Difference Co-Array

Let us consider any element array (possibly nonlinear).
Then the following are true for the weight function corre-
sponding to its difference co-array:

1)
2)
3)
4)

Property (1) is due to the fact that occurs whenever
in (4) and that happens exactly times for

.
Property (2) can be verified as follows: Say the value

occurs as the difference between the th and the th sensors, i.e.,
. Then, for any . Therefore can

occur only once as we consider the set of differences in position
between a given sensor (say, th) and the remaining sensors. So
the maximum number of times it can occur is once, for each
value of , i.e., it can occur a maximum
of times. For example, in a element ULA with unit
spacing, the difference of 1 occurs exactly times.

Property (3) is easily verifiable since whenever
occurs, correspondingly we also get the position difference

. Hence the values and occur with equal
frequency.

Property (4) can be verified as follows: The LHS indicates the
sum of occurences of all possible nonzero position differences

. The total number of times all position differences can
occur is exactly equal to all possible permutations, taken two
at a time from the set , which is equal to

.
It is to be noted that the cardinality of for a given array

gives the degrees of freedom that can be obtained from the
difference co-array associated with that array. However, from
property (4) above, we can immediately conclude that the max-
imum degrees of freedom that can be obtainable from a differ-
ence co-array for a element array with any geometry, is

(5)

Thus we see that if we use second-order statistics, then,
by exploiting the degrees of freedom (DOF) of the difference
co-array, there is a possibility that we can get degrees
of freedom using only physical elements. gives
a global upper bound on the maximum DOF achievable from
the difference co-array over all classes of arrays. Also there is
a trade-off between the degrees of freedom and the value of the
weight function which is clear from Property (4) above. If a
difference occurs more than once (i.e., for some ),
then it implies a drop in the overall cardinality (and thereby the
degrees of freedom) of .

B. Computing the Weight Function

Given a linear array with as the minimum spacing of the
underlying grid on which sensors are assumed to be located,
define the function which takes a value 1 if there is a sensor
located at and 0 otherwise. Then the weight function
can be computed as the convolution:

(6)

where . As an example, the difference co-array
of an element ULA is another ULA with elements.
The difference co-array of a uniform circular array (UCA) is a
set of concentric UCAs with degrees of freedom
when is odd. Minimum redundancy arrays form a class of
nonuniform arrays which have the longest difference co-arrays
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under the constraint that the difference co-array is a ULA. How-
ever, the sensor locations and degrees of freedom of such arrays
cannot be computed in closed form for any arbitrary and they
are found through computer search [7], [8].

C. Comparison of Underdetermined DOA Estimation
Techniques From the Co-Array Perspective

1) Augmented Matrix Approach [3], [4], [11]:
This method exploits the difference co-array of a minimum
redundancy array but effectively uses only one half of the
difference co-array, because the negative differences are
used up to make the augmented matrix Hermitian. Hence,
it can attain degrees of freedom where is the cardi-
nality of . Also, in case of ULA, this method cannot ex-
ploit the additional degrees of freedom provided by the dif-
ference co-array of the ULA because it only uses one half
of the co-array. So it cannot identify sources beyond the
traditional limit of for a element ULA. The mod-
ification to [3] that was suggested in [5], [6] also has the
same limitation. They assume that the maximum number
of resolvable sources that can be obtained from any el-
ement array is (which is because they
aim at constructing a Hermitian Toeplitz matrix) whereas
the actual difference co-array provides twice as many de-
grees of freedom. So using some other suitable algorithm,
there is a possibility that this additional freedom might be
exploited and even with a element ULA, one can resolve

sources (see below).
2) Fourth-order cumulants [13]–[16]: Here the effective

steering vector becomes , as given in [13]
and [16]. Thus behaves exactly like the steering
vector corresponding to the entire difference co-array of
the original array, where each row represents an element
of the co-array. Depending on the weight function of the
co-array, the row corresponding to the th element of
the co-array occurs times in . Nevertheless,
it captures all degrees of freedom offered by the entire
co-array and hence even for an ULA with sensors, it
can resolve up to sources. However, a drawback
of this method is that it is applicable only to cases where
the source signals are non-Gaussian. Also, one needs to
compute the fourth-order cumulants of the received signal
which might require large number of snapshots and longer
computation time.

3) KR product based MUSIC: [17] This recent method ex-
ploits quasi-stationarity of source signals to construct a full
rank matrix whose rank is given by the rank of the effec-
tive array manifold where denotes
the KR product. behaves like the manifold of the en-
tire difference co-array and hence it is inherently capable of
exploiting the full degrees of freedom offered by the differ-
ence co-array. The authors considered a element ULA
and provided a Krushkal rank based argument to prove
that it can identify upto sources. However such
argument is not necessary because the identifiability con-
dition becomes obvious when we view it in the light of the
co-array of a ULA. The advantage of this method is that
it uses only second-order statistics of the data and hence

has no problem in handling Gaussian sources. However,
it requires quasi-stationarity to ensure that the constructed
matrix is full rank.

III. THE CONCEPT OF NESTED ARRAY: DEGREES OF FREEDOM

AND OPTIMIZATION

As we observed in Section III, a key idea behind the ability to
resolve more sources than physical sensors, is to use a possibly
nonuniform array so that its difference co-array has significantly
more degrees of freedom than the original array. In [3] and [5],
classes of Minimum Redundancy arrays (MRAs) were used to
achieve this purpose. However, the main problem is that there is
no simple way to construct these arrays and it requires extensive
computer search [1], [10], [12]. Hence, there is no way to predict
the attainable degrees of freedom of MRAs for a given other
than the fact that it is always strictly less than
[1]. So, much of the work on underdetermined DOA estimation
problems have been performed considering specific examples
of MRAs instead of a general class.

In this section, we attempt to provide a solution to this
problem by proposing a class of “nested arrays.” This array
structure, as we shall show, can be generated very easily in
a systematic fashion and we can exactly predict degrees of
freedom of its co-array for a given . Moreover, with this
class, it is indeed possible to generate degrees of
freedom from physical elements. It is also easy to extend
this idea of nesting to higher dimensions. A similar increase in
degrees of freedom has been achieved in MIMO radar using
the virtual array concept through active sensing. But here we
will show that even in the passive scenario, it is possible to
exploit such nested structures and attain even more degrees
of freedom compared to the corresponding MIMO radar with
same number of physical elements. The “two level” nested
array as we shall define below, is similar to the array structure
originally proposed by Bracewell (see [28]). The combination
of the transmitting and the receiving arrays in MIMO radar
also has a similar structure. However, we shall generalize the
structure to beyond 2 levels to systematically increase the
degrees of freedom.

A. MIMO Radar and the Virtual Array

Consider a collocated MIMO radar with an element ULA
as the transmitter and an element ULA as the receiver. The
transmitter transmits orthogonal waveforms, each through
one antenna which are separately extracted through matched fil-
tering at the receiver. If the spacing at the transmitter is made

times that at the receiver, then we can make the signals at
the output of the matched filter at the receiver behave as if they
have been received by a virtual array of sensors [10],
[18], [21]. This virtual array is essentially the convolution of
the two ULAs and it provides a convenient way to attain
degrees of freedom using only physical sensors. The
sensor positions in the new virtual array are given by the set

where
and denote the position of the th transmit and the th

receive antenna, respectively. Comparing with (4), we have the
sum of positions instead of the differences. This is somewhat
similar to the sum co-array discussed in [19], the difference
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Fig. 1. A 2 level nested array with 3 sensors in each level (top), and the weight
function of its difference co-array (bottom).

being, the sum is between two different sets instead of between
the same set. For an arbitrary array, the geometry of the sum and
the difference co-arrays in general will be quite different and so
will be their degrees of freedom.

B. Two Level Nested Passive Array

A two-level nested array is basically a concatenation of
two ULAs: inner and outer where the inner ULA has
elements with spacing and the outer ULA has ele-
ments with spacing such that . More
precisely it is a linear array with sensors locations given by the
union of the sets and

. Fig. 1 illustrates
the nested array. It is similar to the union of the transmit and the
receive arrays of a MIMO radar and uses the same number of
sensors. However here we use a single such array for receiving
only (passive sensing) instead of active sensing as done in
MIMO radar.

Fig. 1 also shows the difference co-array of this nested array.
Two important observations about the co-array are:

• It is a filled ULA with elements whose
positions are given by the set defined as

(7)

• Comparing with the virtual array of the MIMO radar, we
find that it has twice as many degrees of freedom though
both use the same number of physical sensors. Also, the
proposed nested array can be used as a passive array, i.e.,
the entire array is used for “receive only”, and yet we can
successfully exploit the degrees of freedom of its co-array
(as we shall demonstrate when we perform DOA estima-
tion and beamforming with this array) as opposed to the
MIMO radar situation where the longer virtual array can
only be realized through “active sensing”.

Thus we demonstrated that with a two-level nested array, we
can attain freedoms in the co-array using
only elements. This indeed gives us a systematic way
to increase the degrees of freedom of the co-array, as opposed
to the MRAs which need computer search to find those array

Fig. 2. The �th nesting level containing � sensors in a �-level nested linear
array.

structures. We can further optimize the distribution of sensors in
the two levels by finding , that maximize the total degrees
of freedom, , under the constraint of fixed total
number of sensors, i.e., . The solution (using
AM-GM inequalities) can be verified as:

Hence, using 2 level of nesting, we can obtain little over half of
the maximum limit in (5). So now we examine how far we can
increase the degrees of freedom of the co-array by extending the
nesting strategy to more than two levels.

C. Levels of Nesting

A ‘ -level’ nested linear array, parameterized by
, is defined as one where the

sensor positions are given by the set
where

(8)

The structure of the th nesting level ( ) in a -level
nested array is depicted in Fig. 2. So, the “ ”-level nested array
is essentially a union of ULAs with sensors in the th
level of nesting and the intersensor spacing in the th level is

times the inter-sensor spacing in the th level.
Note that the total number of physical sensors in the nested array
is .

It can be verified using the convolution formula in (6) that the
degrees of freedom in the corresponding difference co-array is

which can be simplified to

(9)

The corresponding difference co-array, however, is not a filled
ULA for more than two stages of nesting.
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D. Optimization of the Level Nested Array

Given a number of sensors, , we would like to know the
number of nested levels and also the number of sensors per
nesting level, which will maximize the degrees of freedom of
the nested array. This can be cast as the following optimization
problem:

subject to: (10)

Since the variables are all positive integers,
this is a combinatorial optimization problem. However, we will
provide a closed form solution to this problem using a simple
observation and thereby deduce the structure of the optimally
nested array. The solution to this problem is given by the fol-
lowing theorem

Theorem 1: Given a number of sensors, the optimal
number of nesting levels and the number of sensors per
nesting level are given by

The corresponding difference array is a nonuniform linear array
with degrees of freedom given by
which is same as the upper bound in (5).

Proof: See Appendix .
Corollary 1: Structure of the Optimally Nested Array: Sub-

stituting these optimum values into (8), it can be verified that the
optimum nested array has sensors located at the positions given
by the set .

Hence we have this interesting observation: The optimally
nested array is one with exponential spacing.

Remarks

1) Compared to the minimum redundancy arrays, our two
level nested array will always produce less degrees of
freedom since the minimum redundancy arrays are opti-
mized to produce the longest difference co-array under the
constraint that the difference co-array is a ULA. However,
the structure of a MRA for a given cannot be exactly
predicted and it can only be found through numerical sim-
ulations individually for each . In contrast, the nested
arrays are easy to construct and the sensor positions and
degrees of freedom are analytically tractable and are also

.
2) Extending the nesting strategy beyond two levels fails to

produce a difference co-array which is a ULA (i.e., holes
appear). Same is true for the optimally nested array which
is exponentially spaced. This is because the difference
array is associated with the second-order statistics of the
received data. So, extending beyond two levels of nesting
will have a nice advantage if we consider higher-order
statistics. For example, if we consider fourth-order statis-
tics, then instead of the difference co-array, we shall be
interested in the difference of the difference set. In such a
situation, a 4 level nested array with elements in each

level, will beautifully produce a filled ULA with
elements. Thus, an important advantage of this nesting
strategy is that it easily extends to the case of higher-order
statistics, producing consistent increase in degrees of
freedom. In future, we shall explore this advantage in
greater detail. It is to be noted that MRAs cannot yield

degrees of freedom with fourth-order statistics
because the difference array is a ULA.

3) The optimally nested array belongs to a special class of
array, namely, the nonredundant array. Non redundant ar-
rays are the ones for which every difference in the differ-
ence co-array appears only once (except the zero lag which
has to appear times). Hence, by Property 4 in Section III,
it achieves the maximum value of degrees of freedom given
by (5) for any value of . It is interesting to note that while
the two level nested array belongs to the class of “no-hole”
arrays (arrays with no holes but with redundancies), the
optimally nested array is a “nonredundant array” (arrays
which have no redundancies but have holes).

For comparison, we enlist the degrees of freedom in the dif-
ference co-array of the MRAs [1], 2 level nested array and the
upper bound in (5) (achieved by the optimally nested array) for
different values of :

IV. APPLICATIONS OF THE NESTED ARRAY IN DOA
ESTIMATION OF MORE SOURCES THAN SENSORS

As discussed in Section III, the increased degrees of freedom
offered by the co-array were exploited by different techniques
such as augmented matrix approach [3], [5], fourth-order cumu-
lant based methods [13] and the recent quasi stationary signal
based method [17]. However, as we pointed out earlier, all of
them have limitations. Hence, in the following section, we pro-
pose an alternative way to exploit the degrees of freedom by ap-
plying the spatial smoothing technique [22] in a novel fashion.
This approach guarantees to produce a positive semidefinite co-
variance matrix corresponding to the co-array even for finite
snapshots (thereby overcoming the limitation of [3] without re-
sorting to the multiple iterations suggested in [5]). Also, unlike
the methods based on fourth-order cumulants, our proposed ap-
proach would work even in the case of Gaussian signals and
unlike [17], it is equally applicable for stationary signals.

A. Spatial Smoothing Based DOA Estimation

We propose a spatial smoothing based approach for ex-
ploiting the degrees of freedom of the difference co-array. It
is to be noted that we do not use spatial smoothing for decor-
relating uncorrelated sources, as it is done in the conventional
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sense [22], [23]. Rather, it is used as a technique to build up the
rank of an observation matrix so that we do not need to either
use the fourth-order cumulant or assume quasi stationarity of
signals. Note that spatial smoothing works only for a ULA and
so we shall focus on the two-level nested array for applying
this technique since its difference co-array is a filled ULA. It
should be remembered that application of the proposed spatial
smoothing based method is not restricted to nested arrays and it
can be applied to any array whose difference co-array is a filled
ULA (including the MRA).

Consider the signal model in Section II given by (3) for a
two level nested array with sensors in each level. We as-
sume to be even, similar arguments can be applied for the odd
case as well. The dimension of the new array manifold
is but it has precisely as many distinct rows as the
number of degrees of freedom of the difference co-array which
is for 2 level nested array for even . Since
the difference co-array in this case is a filled ULA,
is like a Vandermonde matrix with distinct
rows and hence its rank is as long as .
However the equivalent source signal vector for this co-array
consists of the powers of the actual sources and hence they
behave like fully coherent sources. In [17], this problem was
taken care of by assuming the source powers to vary in different
quasi stationary intervals and these were collected to build a full
rank matrix. Here, we propose an alternate solution by using
the well known technique of spatial smoothing that is applied
for coherent sources, to the new signal model given by (3). We
should like to emphasize that the spatial smoothing technique
which is usually applied for ULAs, might also be used for the
difference co-array (which is not a ULA) of the optimally nested
array after doing some preprocessing like interpolation as sug-
gested by [24].

To apply spatial smoothing, first let us construct a new matrix
of size from where we

have removed the repeated rows (after their first occurrence)
and also sorted them so that the th row corresponds to the
sensor location in the difference co-array
of the 2 level nested array. This is equivalent to removing the
corresponding rows from the observation vector and sorting
them to get a new vector given by

(11)

where is a vector of all zeros except a
1 at the th position. It can be verified that due to
the above mentioned sorting and replacement of repeated rows,
the deterministic noise vector changes from in (3) to .

From (7), the difference co-array of this 2 level nested array
has sensors located from to

. We now divide this co-array into
overlapping subarrays, each with elements, where
the th subarray has sensors located at

The th subarray corresponds to the th to
th rows of which we denote as

where is a matrix consisting of the
th to th rows of

and is a vector of all zeros except a 1 at the th position.
It is easy to check that

where (see the equation at the bottom of the page). Define

Taking the average of over all , we get

(12)

We call the matrix as the spatially smmoothed matrix and it
enables us to perform DOA estimation of sources with

sensors, as given by the following theorem:
Theorem 2: The matrix as defined in (12) can be ex-

pressed as where

has the same form as the covariance matrix of the signal received
by a longer ULA consisting of sensors and hence
by applying MUSIC on , upto sources can
be identified.

Proof: From (12), we get

(13)

. . .
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where

. . . ...
...

...
...

where

Noticing that

...
...

...
...

we can rewrite (13) as

(14)

where

. . .
(15)

Since is a diagonal matrix with positive entries, the matrix
has the same

form as the conventional covariance matrix used in subspace
based DOA estimation techniques when applied on a ULA with

sensors whose array manifold is represented by
. It shares the same set of eigenvectors as and its eigen-

values are the square roots of those of . So by eigendecom-
position of , the eigenvectors corresponding to the smallest

eigenvalues of can be found, which will
span the null space of and we can apply subspace based
algorithms like MUSIC on it to identify up to

sources.

Remarks

1) The spatial smoothing technique essentially halves the
total degrees of freedom offered by the difference co-array,
hence we can identify up to sources
as opposed to (if we could exploit total
DOF of the full difference co-array). However, using
the forward-backward spatial smoothing algorithm, this
can be increased to [25]. The
augmented matrix approach [3] or the modified detection
estimation algorithm in [5], however, can not identify
more than sources because, as we
discussed earlier, they use only one half of the co-array.

2) The co-array of the optimally nested array is not a filled
ULA and hence spatial smoothing cannot be used directly
on it. It would require some preprocessing like interpola-
tion [24]. However the method based on quasi stationary
signals [17] can be applied to it and the full degrees of
freedom of the optimally nested array can be exploited as
we shall demonstrate through numerical examples.

3) Since is constructed as in (12), it is a sum of vector
outer products and hence it is positive semidefinite by con-
struction for any finite value of snapshots. This essentially
overcomes the major flaw of augmented covariance matrix
approach [3] without resorting to the iterative techniques
described in [5].

V. BEAMFORMING WITH INCREASED DEGREES OF FREEDOM

As discussed in the last section, the vector in (3) can be
thought of as the signal received at the difference co-array with
the amplitudes of the source signal vector replaced by their cor-
responding powers. So we can propose beamforming with re-
spect to the signal powers instead of with respect to the signal
amplitudes as is the convention. This will enable us to perform
beamforming with the full degrees of freedom of the difference
co-array and gain degrees of freedom using only
physical sensors. To see this, consider taking the inner product
of the vector with a weight vector to get

(16)

Defining the new beampattern as

(17)

we can write (16) as

(18)

Hence, the power of the th source from direction gets
spatially filtered by the amount and thereby spatial
filtering (or beamforming) is performed with respect to the
power of the signal. As is evident, this kind of beamforming is
based on a nonlinear preprocessing (taking the autocorrelation
of the received signal vector) and hence it is essentially a
nonlinear beamformer. It requires time-averaging to realize
(2) from which the subsequent signal model is derived. It also
requires uncorrelated sources and enough snapshots to realize
the autocorrelation matrix. An idea similar to this was discussed
in [26] and [27] where beamforming based on time-averaged
arrays was suggested using specific array geometries. We now
exhibit some examples of different approaches to beamforming
that can be performed with this array. Since the two-level nested
array has a uniform difference co-array, we would concentrate
on beamforming with 2 level nesting since all the conventional
beamforming approaches are based on ULAs. However, the
beamforming techniques might be extended to the optimally
nested array as well.
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A. Deterministic Beamforming

Let us consider a 2 level nested array with sensors in
each level. The difference co-array is an with

elements. Let denote the 1
steering vector of the ULA corresponding to the co-array. Say
we want to realize a beam with this ULA and let
denote the deterministic weights such that

(19)

Now to realize this beampattern with the two level nested array,
let denote the weight vector we would like to apply to the
vector in (3). Using (19), this means

From the discussion of the co-array of the 2 level nested array in
Section IV, it can be easily seen that the 1 vector

consists of the same rows as , except the fact that some
of them occur more than once. Let denote the number of times
the th row of occurs in and let
denote the row numbers where it occurs in . Then
the weight vector is given by

(20)

B. Nulling of Jammers and Noise

Consider jammers incident on the 2 level nested array from
directions , respectively. Also assume that
we are interested in looking into the direction . Using the pro-
posed beamformer in (19), this means we wish to determine the
weight to spatially null the jammers and maintain unity re-
sponse in the look direction. This means

However, it can be noticed from (18) that the random noise now
assumes the form of a deterministic vector , which can also be
nulled by the weight . Hence, using this beamforming, we can
effectively null the noise term as well. This is something which
really cannot be achieved by the conventional beamforming.
Thus to null both jammers and noise, should be selected as
the solution to

...
...

(21)

With this beamforming, we can null noise, and up to
jammers (with unity response in look direction),

since we have in all degrees of freedom in
the co-array of the 2-level nested array. The jammer DOAs are

either assumed known or can be estimated using the proposed
spatial smoothing based method in Section V. This technique
for nulling jammers can also be extended to the case of the opti-
mally nested array by simply replacing of the 2 level nested
array with that of the optimally nested one in (21).

It is to be noted that in practice, since the signal covariance
matrix is estimated from a finite number of snapshots, the Kro-
necker product in (21) is only an approximation and hence (21)
is satisfied only approximately. However, as we shall show in
the numerical examples, the performance is quite satisfactory
for moderate number of snapshots.

C. MVDR-Like Beamforming

When the jammer directions are not specifically known,
MVDR beamforming is a popular alternative where the jam-
mers are automatically suppressed by making the weights
inversely proportional to the total covariance matrix of
signal+jammer+noise while maintaining a distortionless con-
straint in the look direction [1]. However the MVDR yields
poor performance when the jammers are coherent [29]. In our
proposed beamforming, though the incident jammers are orig-
inally assumed uncorrelated, after the time averaging process,
they are represented by their powers which form a deterministic
vector in (3). Hence we cannot apply a MVDR directly on

since the resulting covariance matrix will be of rank 1. So
instead, we perform spatial smoothing on as described in
the last section by considering the sub-array with elements at

as the reference sub
array (whose steering vector we denote as ) and get the
spatially smoothed covariance matrix as in (14). This will
help us in building a full rank covariance matrix which can
be effectively used for MVDR beamforming. With constraint
of unity response in the look direction , we can express the
MVDR weight as

(22)

VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illustrate
the superior performance of the nested array in terms of de-
grees of freedom for DOA estimation and beamforming. In
the examples, we consider a 6 sensor array ( ) with
8 narrowband sources ( ) impinging on it from direc-
tions of arrival { , , ,0 ,15 ,30 ,45 ,60 },
all with equal power. The sources are modeled as random
Gaussian processes. For comparing with the KR product based
MUSIC [17] which requires quasi stationarity, we assume
16 different quasi stationary intervals with snapshots in
each interval. The noise is assumed to be spatially and tem-
porally white. For being able to apply spatial smoothing, we
consider a 2 level nested array with 3 sensors in each level.
The method based on spatial smoothing can resolve up to

. The KR-product based method
can resolve but requires
quasi-stationary signals and a larger number of snapshots
compared to the proposed method. In particular, if the number
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Fig. 3. MUSIC spectrum using the SS-method and the QS-method, as a func-
tion of sine of the DOA, � � �,� � �, � � ����, ��� � � 	
.

Fig. 4. MUSIC spectrum using the SS-method and QS-method, as a function
of sine of the DOA. Here � � �,� � �, � � ���, ��� � � 	
.

of sources is , then the KR-product based method requires
at least times more snapshots than the proposed spatial
smoothing based method.

A. Music Spectra

Fig. 3 shows the representative MUSIC spectra after applying
the proposed spatial smoothing based technique (SS-method)
and the quasi stationary based techniques (QS-method). Both
use a total of with the KR product based
MUSIC using for each of the 16 quasi-
stationary intervals. The SNR for both the methods is assumed
to be 0 dB. As can be seen, both of them can resolve the 8
sources sufficiently well.

Now let us reduce the total number of snapshots to
. Fig. 4 illustrates the MUSIC spectra for the pro-

posed SS-method and the QS-method. The QS method clearly
suffers due to lack of snapshots and it misses the peak at
whereas the SS method still shows a good performance with
clearly discernible peaks of the MUSIC spectrum. This shows

Fig. 5. RMSE (in degrees) versus SNR (for the source at 30 ) of QS and SS
methods applied on 2 level nested array and ordinary MUSIC on a 12 element
ULA, with � � ���,� � �.

Fig. 6. RMSE (in degrees) versus SNR (for the source at 30 ) of QS and SS
methods applied on 2 level nested array and ordinary MUSIC on a 12 element
ULA, with � � ����,� � �.

the effect of snapshots on the performance of the two methods.
Next, we study the performance of both the methods through
Monte Carlo simulations.

B. RMSE versus SNR and Snapshots

We compare the SS-method and QS-methods by studying
the RMSE of the angle estimates as a function of both SNR and
snapshots. Since the two level array has 12 degrees of freedom,
we also consider the corresponding RMSE for conventional
MUSIC applied to a 12 element ULA which we would use as
a benchmark at high SNR. We plot the RMSE for the source at
30 . The performance is similar for the other sources as well.
Fig. 5 shows the RMSE of the three methods as a function
of SNR, averaged over 1500 Monte Carlo simulations, for

. Fig. 6 show the corresponding perfor-
mances for .

Notice how the performance of both SS and QS methods
improve with SNR. Also, the SS method performs reasonably
better than the KR method at low snapshots whereas the dif-
ference in their performance becomes less prominent at larger
number of snaps. Note, both the methods perform worse than
the conventional MUSIC applied to a 12 element ULA because
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Fig. 7. RMSE (in degrees) versus the number of snapshots � (for the source at
30 ) of QS and SS methods applied on 2 level nested array and ordinary MUSIC
on a 12 element ULA. Here ��� � � ��, � � �.

Fig. 8. Comparison of detection performance of SS method applied to 2 level
nested array and MUSIC applied to 12 element ULA as a function of number
of snapshots. Here ��� � �	 ��, � � �.

of the finite sample size due to which the kronecker product in
(17) is only an approximation.

Next, in Fig. 7 we plot the performance of the three methods
for by varying the total number of snapshots .
The performance of both SS and QS improve considerably with
the number of snapshots with the QS method performing strictly
worse than the proposed SS method.

C. Detection Performance

In the previous examples, we assumed the number of source
to be known. However, in practical situations, we need to esti-

mate it from the available data. To do this, we would need to find
some optimum detection algorithm suited to our model, which
is a subject of our future research in this direction. However,
we applied the threshold based technique in [30] which proved
to give satisfactory results in the proposed SS based technique.
We plot the estimated probability of detection of this proposed
method at as a function of snapshots in Fig. 8. For
comparison, we also plot the corresponding performance of the
conventional MUSIC applied on 12 element ULA. The proba-
bilities were obtained by running 1000 Monte Carlo simulations

Fig. 9. Comparison of resolution performance of SS-MUSIC method applied
to 2 level nested array with 6 sensors and traditional MUSIC applied to a 12
element ULA and a 6 element ULA, as a function of SNR for two closely spaced
sources at 12 and 14 .

averaged over another 1000 runs. We can see that the detection
performance improves dramatically with increasing snapshots
and approaches that of the conventional MUSIC asymptotically.

D. Resolution Performance

The advantage of MUSIC-like algorithms comes from the
fact that these are super-resolution algorithms, capable of
resolving even very closely spaced sources. Since SS-MUSIC
makes use of the increased degrees of freedom provided by
the co-array, we expect its resolution performance to improve
greatly. In this example, we consider two sources placed at 12
and 14 and compare the resolution performances of two-level
nested array with 6 sensors, an ULA with 6 sensors and an
ULA with 12 sensors (since SS MUSIC applied on 6 element
ULA yields 12 degrees of freedom). Following [31], we plot the
probability of resolution versus SNR for ,
averaged over 1000 Monte Carlo runs in Fig. 9. As in [31], we
assume that the number of sources is known. Clearly the two
level nested array outperforms the corresponding ULA with
same number of sensors and performs close to the much longer
ULA.

E. 2 Level versus Optimally Nested Array

We now provide an example to show the ability of the op-
timally nested array to resolve more sources than the corre-
sponding 2 level array for sensors. Since the spatial
smoothing based technique cannot be applied directly to the
optimally nested array, we consider QS method to perform the
DOA estimation. With QS method, the 2 level array can resolve

sources whereas the optimally nested array can re-
solve 30 sources. We consider 27 quasi-stationary sources dis-
tributed uniformly between and 60 . We use
quasi-stationary intervals with per interval
yielding a total of . Figs. 10 and
11, respectively, show the corresponding spectrum obtained by
using QS-MUSIC to the optimally nested array and the 2 level
nested array. Clearly, the 2 level nested array fails to detect the
sources whereas the optimally nested array can perfectly detect
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Fig. 10. MUSIC spectrum for QS-method applied to the optimally nested array
with � � �, � � �����,� � �� and ��	 � � 
�.

Fig. 11. MUSIC spectrum for QS-method applied to the 2 level nested array
with � � �, � � �����,� � ��, and ��	 � � 
�.

them. This confirms the superior detection ability of the opti-
mally nested array. For large , the optimally nested array can
detect about twice as many sources as the two-level nested array.

F. Beamforming

In this section, we demonstrate the capability to perform
beamforming with increased degrees of freedom offered by
the 2 level nested array. There are two ways of plotting the
resultant beampattern. One way is to plot the pattern
as defined in (17) directly after computing the necessary
weights. This, however, is not practical because the kronecker
product in (17) is realized only approximately due to finite
snapshots. Hence, for practical reasons, to plot a more realistic
beampattern, we consider a single source at angle and plot
the amplitude response of our nonlinear beamformer to it by
varying for finite number of snapshots. This automatically
takes into consideration the finite sample effect. We call the
former beam as an desired beampattern and the latter as the
practical beampattern.

1) Deterministic Beampattern: Let us consider a simple sinc
beampattern obtained by applying uniform weighting to a 19 el-
ement array. Since with 2 level of nesting

Fig. 12. Practical deterministic sinc beampattern obtained by nonlinear beam-
forming from the 2 level nested array, � � �, � � ���.

gives , we consider a
6 element array and plot both the desired and practical beampat-
terns in Fig. 12 by computing the weights following (20). The
practical beampattern is generated using
and it approximates the ideal beampattern quite closely.

2) Jammer and Noise Nulling: Consider a 4 element array
with 2 levels of nesting. The look direction is 0 and we consider
6 jammers from directions { , , ,15 ,30 ,45 }
with jammer to signal power ratio 20 dB and signal to noise
ratio 0 dB. The desired and practical beampatterns are gener-
ated using the weight computed from (21) and plotted in Fig. 14.
Note the introduction of nulls along the jammer positions. Also,
the sidelobes are seen to be high which could pose problems for
noise in the conventional beamforming. However, unlike con-
ventional beamforming, in our case the noise has been reduced
to a deterministic vector which can also be efficiently nulled.
So the presence of noise at all spatial angles (which is assumed
in conventional beamforming) can be ruled out and, hence, the
high sidelobes do not pose a serious threat as far as noise is con-
cerned. Also, we see that though this jammer and noise nulling
theoretically requires perfect knowledge of signal covariance
matrix, the practical beampattern shows that the approximation
is reasonably good at moderate number of snapshots ( ).

In order to show the performance improvement of our pro-
posed beamforming, we plot the signal to jammer plus noise
ratio (SJNR) versus the number of snapshots in Fig. 13. The
SJNR plot is obtained as follows. The response of a beamformer
to an input signal consisting of desired signal+jammer+noise is
measured. Then the response of the beamformer to the input
signal consisting only of the same jammer+noise is measured.
Finally the ratio between the difference of the first and second
responses, and the second response is taken to be the SJNR and
it is plotted on a dB scale, averaged over 1000 Monte Carlo
simulations. Notice how the SJNR performance of proposed
method improves with number of snapshots. We also compare it
with the SJNR performance of an equivalent ULA with 11 sen-
sors (since the co-array of a 2 level nested array with 4 sensors
has 11 degrees of freedom) where we introduced nulls along
jammer directions and used remaining degrees of freedom to
maximize the SNR. As expected, the SJNR of the equivalent
ULA is not affected by number of snapshots. Also, it is to be
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Fig. 13. Signal-to-Jammer-and-noise-ratio (SJNR) versus number of snapshots
(averaged over 1000 Monte Carlo runs) for 2 level nested array with four sensors
and the equivalent ULA with 11 sensors, ������ �� 	
����� � , ��� �
� ��, ��� � ��� ��.

Fig. 14. Practical Beampattern obtained from the 2 level nested array after
nulling 6 jammers and noise, � � �, � � ���.

noted that the proposed beamforming outperforms the ULA.
This can be explained from the fact that we are actually able to
null the noise (the extent to which it is nulled again depends on
snapshots) which is not possible for the ordinary beamforming
case with the equivalent ULA, and hence the SJNR for our
method increases almost linearly (on dB scale) with the number
of snapshots.

3) MVDR-Like Beampattern: We now plot the MVDR-like
beampattern for the spatially smoothed 6 element array with
2 levels of nesting. Look direction is 0 and we consider
9 jammers at { , , , , 20 , 30 , 45 ,
55 , 60 }. The weights are computed as per (22) using

to compute the spatially smoothed covariance
matrix , and the desired beampattern is plotted in Fig. 15.

Through the inversion of the spatially smoothed matrix in
(22), nulls have been automatically introduced in the jammer
directions even without explicitly finding the jammer DOAs.

VII. CONCLUSION

In this paper, we have attempted a unified viewpoint to com-
pare the established approaches to the problem of underdeter-
mined source localization in the light of the co-array concept.
Designing arrays for high resolution array processing was also
addressed in [33]. Drawing inspiration from the MIMO radar

Fig. 15. Desired MVDR-like beampattern obtained by applying spatial
smoothing to the 2 level nested array, � � , using � � ���� ��
������ for
computing the smoothed covariance matrix.

literature, we proposed a novel nested array structure which can
realize significantly more degrees of freedom even in the passive
sensing scenario. Different nesting strategies were explored and
the optimum nested array structure was found through solving a
combinatorial optimization problem. Though this nested array
could be used in conjunction with both the fourth-order cumu-
lant based and the KR-product based methods, it would suffer
from the inherent drawbacks of these techniques. So we pro-
posed an alternative spatial smoothing based approach to under-
determined DOA estimation, which does not require any of the
assumptions in the previous two methods. We also demonstrated
how to perform beamforming with this array structure. The re-
sults were verified through simulations and the performances of
the proposed techniques are seen to improve considerably by in-
creasing the number of snapshots.

Future research in this area will be directed towards finding
an optimum detection algorithm for the proposed nested array
structure, deducing the optimum beamforming policy to max-
imize signal to jammer and noise ratio and also extension of
these ideas to the case of wideband signals. Another important
direction would be to evaluate the performance of the proposed
method (based on the construction of the spatially smoothed ma-
trix) analytically and derive theoretical insights into behavior of
the proposed algorithms for finite snapshots, SNR and number
of impinging sources.

APPENDIX

PROOF OF THEOREM 1

Using the constraint in (10), we can write (9) as

(23)

Let us consider , the number of sensors in the th level of
nesting. We shall deal with the following two cases separately:

• Case I: . Consider breaking into the sum
of two smaller integers and , i.e., .
This amounts to breaking the th nested level into 2 levels
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such that now there are levels of nesting with
sensors,

respectively. Using the expression for degrees of freedom
in (23), we can write, the new degrees of freedom for this
new nested array, as

(24)

Subtracting (23) from (24), we get the change in DOF due
to splitting the th nesting level:

Thus we can conclude that breaking up the th level of
nesting into two levels, always increases the degrees of
freedom for . Hence we should go on
redistributing the sensors in the inner nesting levels till we
hit only one sensor per nesting level. So, at this stage we
have elements in the last stage and all the stages before
it have one sensor each, i.e.,

Now we consider the last stage of nesting and optimize
the number of sensors in them.

• Case II: . Similar to the previous case, let us break
as So now we have a

level-nested array, with sensors,
respectively, in the levels. Applying the formula for
degrees of freedom in (23), we get the degrees of freedom
in this case as

(25)

Similarly as before, the increase in degrees of freedom can
be found by subtracting (23) from (25) as

Thus we see that in this case also, the degrees of freedom
increase by splitting as long as the number of sensors in the
last level (i.e., ) is . So we should go on splitting
the last level of nesting till we hit 2 sensors in the last level
and one sensor in every other level. This, along with the
previous case, also implies that the total number of levels
of nesting is since the total number of
sensors is .
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