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Abstract—High-accuracy target localization and tracking have
been widely used in the modern navigation system. However,
most of the methods such as GPS are highly dependent on
time measurement accuracy, which prevents them from achieving
high accuracy in practice. Time-reversal (TR) based technique
has been shown to be able to achieve centimeter accuracy
localization by fully utilizing the focusing effect brought by
the massive multipaths naturally existing in a rich scattering
environment such as indoor scenarios. By investigating a similar
statistical property, this paper develops a novel high-accuracy
target localization method by using massive MIMO to provide
massive signal components. We first observe that the statistical
autocorrelation of the received energy physically focuses into a
beam around the receiver exhibiting a sinc-like distribution in
far-field scenario. By leveraging such a distribution of the focus-
ing beam, an effective way to estimate the relative moving speed
of the target with respect to a single base station is proposed.
We also obtain the absolute moving speed and subsequently track
the target accurately by associating the speed estimation results
and geometrical relationship of multiple stations. The theoretical
analysis on the error in the speed and localization estimation
validated by numerical simulation results show that the proposed
system can achieve decimeter accuracy for target localization and
tracking.

Index Terms—Statistical electromagnetic, MIMO, target local-
ization and tracking, centimeter accuracy.

I. INTRODUCTION

TARGET localization and tracking have been of great
interest over several decades because of their wide appli-

cations in navigation and many location-based services such
as autonomous drivings [1], [2]. Furthermore, most of these
localization requests emerge in urban areas where the global
positioning system (GPS) [3] cannot offer good performance
because the line-of-sight (LOS) signal between the GPS satel-
lite and the terminal is easily to be blocked by obstacles
such as tall buildings. As a result, it is imperative to seek for
technologies which can provide high-accuracy localization in
complex environments such as dense urban areas under non-
line-of-sight (NLOS) and multipath conditions [4].

Based on their principle, localization techniques can be
classified into two categories, i.e., triangulation-based meth-
ods and fingerprinting-based methods. Triangulation-based
methods consist of two steps. First, model-based parameters
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such as the angle-of-arrivals (AOAs) [5], [6], time-of-arrivals
(TOAs) [7], [8] or time-difference-of-arrival (TDOAs) of LOS
signals [9] are measured at all access points (APs) or base
stations (BSs). Then, the target location can be estimated
by using triangulation/trilateration among all APs/BSs [10].
However, these methods cannot work well under the multi-
path effect and NLOS because of the unreliable parameter
estimation. Fingerprinting-based methods first construct an
offline database by collecting location related features such
as received signal strength (RSS) [11]–[13] and channel state
information (CSI) [14]–[16] in the area of interest. Then,
the same features are extracted from the online signals and
compared with the offline database to obtain the location esti-
mations. However, the overhead of establishing and updating
the offline database also prevents these methods from being
widely adopted [2].

More recently, massive MIMO has been gaining popularity
in target localization because of its high angular resolution and
degree of freedom [17]. This mainly benefits from the hun-
dreds of antennas on the BS, which can enable narrow, highly-
directional and high-gain beams by beamforming [18]. Similar
to the localization methods without using massive MIMO, the
existing massive MIMO-based localization methods can also
be classified into the same two categories. The first is the
triangulation-based methods in which many techniques such
as beamforming [19], multiple signal classification (MUSIC)
[20], 2-D rotational invariance technique [21] and compres-
sive sensing [22], [23] are explored on the base of massive
MIMO systems. To reduce the prohibitive energy consumption
and complexity increment caused by the massive antennas,
high-efficient beam allocation/switching schemes [24], [25],
AOAs estimations in beamspace [26], pre-energy detections
[27] as well as the combination of digital beamforming and
analog techniques [28]–[30] have been considered. In the
fingerprinting-based methods with massive MIMO [31]–[36],
different matching techniques have been studied in comparing
the online phase with the offline phase to estimate the target
location such as model-based similarity comparison [31],
similarity learning by neural network (NNs) [32], [33], support
vector machines (SVMs) [35] and Kernel-based methods [36].
Even though the localization accuracy is improved by lever-
aging the high range/angular resolution provided by massive
antennas, most of existing massive MIMO-based localization
methods still entail the same challenges as the traditional
methods which do not use massive MIMO antennas, that is,
the NLOS distortions and performance degradation in rich-
scattering environment. This motivates us to design a high-
accuracy localization system that is robust to environment
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dynamics while with good performance under multipath and
NLOS conditions.

Inspired by the recent research on decimeter-accuracy in-
door tracking [37]–[40] using time reversal focusing effect
[41], [42], in this paper, we propose a massive MIMO-based
high-accuracy localization and tracking system by utilizing the
focusing effect brought by the massive number of antennas.
We first propose the definition of an important statistical vari-
able, the strength of the autocorrelation function (ACFS) of the
received signal in a massive MIMO system, to characterize the
energy distribution of the focusing effect around a location of
interest. Because the received signal in a massive MIMO sys-
tem contains a large number of components due to the massive
number of antenna elements and further reflections/scattering,
it can be shown that the distribution of the ACFS exhibits
a stationary sinc-like focusing beam1 around the receiver in
spatial domain regardless of the environment.

By leveraging the ACFS, we then develop an approach
which can estimate the relative speed of the target with
respect to a single BS. The absolute moving speed, moving
direction/orientation and location of the target can be further
derived by jointly considering the relative speed estimation
and geometrical relationship among multiple BSs. Different
from [42] which needs an extra inertial sensor to estimate
the moving direction because the energy distribution of the
time reversal focusing effect shows the same trend along all
the directions, the proposed system can estimate the moving
speed/distance and direction simultaneously only based on the
ACFS focusing beam which exhibits different distributions
along different directions. This is because that in the proposed
system the massive number of the incident signal components
reach the receiver from the antennas/BS side, resulting in a
directional focusing beam rather than a symmetrical focusing
ball as shown in [42].

Based on the derivation of the ACFS and how it can be used
for speed and location estimation, we derive the theoretical
expectation of the speed and location estimation errors, which
are further verified by extensive simulations. It is shown that
the proposed system can achieve decimeter-level accuracy for
target localization and tracking in various scenarios, which
outperforms three latest massive MIMO-based localization
techniques [23] [31] [32].

In summary, the main contributions of this work are as
follows:
• We observed and proved that the statistical distribution

of the ACFS of the received signal in a massive MIMO
system exhibits a sinc-like beam pattern, because the
received signal usually contains a large number of LOS
and NLOS signal components.

• Based on the distribution of the ACFS, we developed a
target localization and tracking system which has robust
performance in rich-scattering urban areas with NLOS.
Because the proposed system only needs to calculate the

1We use the term focusing beam rather than beamforming because we
utilize the ACFS, a specific function of the received signal for positioning a
target, and the distribution of the ACFS happens to exhibit a beam-shaped
pattern. There is no ”physical beamforming” that explicitly focuses a signal
towards a receiver.

ACFS of the received signal on the user side while the
speed and location estimations are very straightforward
according to the derived close-form expressions, the sys-
tem enjoys a very low computation complexity and thus
can be widely applied in real-time tracking and navigation
applications with a stringent requirement on the latency.

• We further derived the theoretical speed and localization
error expectations of the proposed system and validated
the theoretical performance analysis using extensive sim-
ulations.

The rest of the paper is organized as follows. In Section II,
we elaborate on the signal model for massive MIMO system
followed by the derivation of the focusing beam. Then, Section
III proposes a speed estimation method by using the focus-
ing beam of multiple distributed BSs. Section IV introduce
the target localization system while Section V derives the
theoretical speed and location estimation error expectations.
Extensive numerical simulations are conducted to validate the
performance of the proposed approach in Section VI. Finally,
Section VII concludes this paper.

II. FOCUSING BEAM IN MASSIVE MIMO

In this section, we first introduce the background knowledge
about the system model. Then, we elaborate on the signal
model and derive the analytical distribution of the ACFS
focusing beam in 5G massive MIMO communication systems.

A. Background Knowledge

Ultra-dense 5G BS deployment: The 5G cellular network
will be an ultra-dense cellular network, e.g., with a density of
40− 50 BS/km2, because that a massive number of antennas
will be deployed on the BS [43], which means that every
antenna’s transmission power has to be greatly decreased
compared to that of a 4G BS, leading to a smaller coverage
area. Second, mmWave transmission is very likely to be
adopted in 5G cellular networks and the signal decays much
faster at mmWave frequency which again will reduce the
cell coverage and thus denser BS deployment is needed. For
example, the Federal Communications Commission (FCC) in
the USA issued a declaratory ruling which indicates that most
of the 5G BSs are about 30 feet tall while the service range of
each BS is about 400-500 feet or less in large crowded areas
[44].
Far-field condition: As shown in Fig. 1, let HB and LBR de-
note the altitude of the BS and the horizontal distance between
the BS and the receiver. Ae is the aperture of the antenna array
A. Due to the Ultra-dense 5G BS deployment, LBR is about 80-
200m in practice [43]. In addition, Ae is less than 2m and HB is
about 10m because of the antenna fabrication and installation
requirements [44]. As a consequence, LBR ≥ 10HB � Ae is
the condition of the far-field scenario in this paper and usually
holds in the 5G networks [45], [46]. This is different from
the conventional far-field condition in which Lf = 2A2

e/λ is
the boundary between the Fresnel region and the Fraunhofer
region [47] with λ as the wavelength of the signal.
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Fig. 1: The set-up for a BS with massive MIMO antennas.

B. Signal Model

As shown in Fig. 1, “B” denotes a BS equipped with M
antennas which communicate with the receiver “r” simulta-
neously. Note that practical measurements in [48]–[50] have
validated that the LOS signal matches with the free space
propagation model while the NLOS signal follow the Raleigh
fading [51] in 5G massive MIMO system. As a result, in urban
areas, the received signal consisting of both LOS and NLOS
parts at baseband can be expressed as

y(t) = yL(t) + yN(t) + n(t),

yL(t) =
√
KL

M∑
m=1

exp(j(k|xmrt|+ φm))

4π|xmrt|
,

yN(t) =
√
KN

N∑
n=1

exp[j(ωdtcosαn + φn)],

(1)

where yL(t) and yN(t) denote the LOS and NLOS components
and KL and KN are their corresponding power, k = 2π/λ is
the wave number, λ is the wave length, ωd is the maximum
radian Doppler frequency, xm and rt are the coordinates of
the m-th antenna and the receiver at time t, respectively,
|xmrt| denotes the Euclidean spatial distance between the
m-th antenna and the receiver, n(t) represents the additive
Gaussian noise, φm is the phase distortion of the m-th LOS
path signal, and αn and φn are the AOA and phase distortion
of the n-th NLOS signal component.

In general, φm is caused by hardware imperfections, het-
erogeneity of the propagation medium and channel attenua-
tions, etc. αn and φn are mainly introduced by the reflec-
tion/absorption of the randomly distributed scatterers in a rich-
scattering urban area. As a result, φm, αn and φn are not
deterministic and can be assumed as i.i.d uniform distributions
over [−π, π) for m = 1, 2, . . . ,M and n = 1, 2, . . . , N
[51], [52], where N is the total number of NLOS signal
components. In practice, the number of multipath N can vary
from 10 to 100 in urban areas according to the practical
measurements in New York City [45], [46].

C. Massive MIMO Focusing Beam

In the following, we explore the distribution of the focusing
effect of massive MIMO in far-field scenario by first deriving
the ACF of the received signal and then the ACFS, which is
inspired by the TRRS in [42], [53] but more robust to the
randomness of signal distortions.

As shown in Fig. 2, a target moves from r0 at time t0 to
rs at time ts on the ground (xOy plane). Then, the ACF of
the received signal between r0 and rs is defined as

ηy(r0, rs) = E[y(t0)y∗(ts)] (2)
≈ ηyL + ηyN + ηn. (3)

where ηn = E[n(t0)n∗(ts)] = σ2I, σ2 is the power spectral
density of the Gaussian noise n(t). ηyL , ηyN and ηn denotes
the ACF of the LOS signal component yL(t), NLOS signal
component yN(t) and the noise term n(t), respectively.

Note that the independence among yL(t), yN(t) and n(t)
is assumed to obtain (3). Detailed derivations can be found in
Appendix. Next, we will derive ηyN and then ηyL , respectively.

1) ACF of NLOS signal: According to [42], [51], ηyN can
be written as

ηyN = E[yN(t0)y∗N(ts)]

= KN

N∑
n=1

N∑
i=1

Eφ,α {exp[j(ωdtcosαn + φn)

·exp[j(ωd(t+ τ)cosαi + φi)}
= KNNJ0(ωdτ) = KNNJ0(kp),

(4)

where τ = ts− t0, Eφ,α means taking expectation over φ and
α, J0(·) is the 0-order Bessel function, and p is the Euclidean
distance between r0 to rs and as shown in Fig. 2. We omit
the details about the derivation of (4) because they are similar
to that in [42], [51].

2) ACF of LOS signal: Similar to (4), the ACF of the LOS
signal yL(t) between r0 and rs is given by

ηyL = ηyL(r0, rs) = E[yL(t0)y∗L(ts)] = KL·
M∑
i=1

M∑
m=1

Eφ
{

exp[j(k(|xir0| − |xmrs|) + φi − φm)]

(4π)2|xir0||xmrs|

}
.

(5)

In the far-field scenario where {|xir0|, |xmrs|} > LBR � Ae
holds, |xir0| and |xmrs| in the denominator of (5) can be
approximated as the same for all elements, i.e., |xir0| ≈ |x0r0|
and |xmrs| ≈ |x0rs| because (|xir0| − |xmrs|) is usually
magnitudes smaller than |xir0| and |xmrs|. We omit the
denominator of (5) in the derivation for simplicity.

Next, we decompose (5) into two different cases, i.e., a)
i = m and b) i 6= m. Considering i = m, we have

η1st
yL

= KL

M∑
m=1

exp(jk(|xmr0| − |xmrs|)). (6)

To compute |xmr0| − |xmrs| in Fig. 2, the angle symbols
are defined as ∠rsr0r

′

s = γ
′

m,∠rsr0r
′

0 = γm,∠r
′

sr0r
′′

0 =
β1,∠r

′′

0 r0r
′

0 = β, where r
′

0 lies in the extension line of lxmr0

satisfying that lxmr
′
0
⊥ lrsr′0

. And r
′′

0 is the projection of r
′

0

on the xOy plane. From the cosine theory, we have

|xmrs|2 = (|xmr0| − pcosγm)2 + psinγ2
m, (7)

cosγm = cosβ · cos(β1 + γ
′

m), cosγ
′

m = ε/p,

cosβ =

√
L2

BR + x2
m√

L2
BR + H2

B + x2
m

, cosβ1 =
LBR√

L2
BR + x2

m

.
(8)
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In the far-field scenario where LBR ≥ 10HB � xm, we can
easily get the following approximations, i.e.,

cosβ ≈ 1, cosβ1 ≈ 1, β1 ≈ β ≈ 0,γ
′

m ≈ γm,

{psinγ, pcosγ} < p� LBR < |xmr0|.
(9)

In this case, we have

|xmrs|2 ≈ (|xmr0| − pcosγm)2, (10)∣∣∣|xmr0| − |xmrs|
∣∣∣ ≈ pcosγm =

−Lε + xmξ√
L2 + x2

m

≈ −ε + xmξ/L,

(11)

where L =
√

L2
BR + H2

B + x2
m, xm = md/2 while d denotes

the inner element space in Array A. In addition, p, ε and
ξ represents the Euclidean spatial distance, range and cross-
range between r0 and rs shown in Fig. 2. Substituting (11)
into (6), η1st

yL
can be rewritten as

η1st
yL

= KLexp(jkε)
M∑
m=1

exp(jkxmξ/L)

= KLMexp(jkε)sinc(
kξAe
2L

),

(12)

where sinc(t) = sin(t)/t.

Similar to (6), when i 6= m in (5), we can get

η2nd
yL

= KL·
M∑
i=1

M∑
m=1,
m6=i

Eφ{exp[j(k(|xir0| − |xmrs|) + φi − φm)]}. (13)

The (i,m) pair of (13) is expressed as

η2nd
yL

(i,m) = Eφ{exp (ψi,0 − ψm,s)︸ ︷︷ ︸
Ψim

+ (φi − φm)︸ ︷︷ ︸
Φ

]}

= Eφ{cos(Ψim + Φ)}+ jEφ{(sin(Ψim + Φ))},
(14)

where ψi,0 = k|xir0|, ψm,s = k|xmrs|.
Since φi and φm are uniformly distributed over [−π, π), the

probability density function (PDF) of Φ = (φi − φm) is

fΦ(φ) =


2π + φ, − 2π ≤ φ ≤ 0

2π − φ, 0 ≤ φ ≤ 2π

0, others.
(15)

Then, the expectation in (14) can be reformulated as

Eφ {cos(Ψim + Φ)} =

∫ 2π

−2π

fΦ(φ)cos(Ψim + φ)dφ

=

∫ 2π

−2π

fΦ(φ)cosΨimcosφdφ−
∫ 2π

−2π

fΦ(φ)sinΨimsinφdφ.

(16)

Given fΦ(φ), we get that

Eφ {cos(Ψim + Φ)} = 0, − 2π ≤ φ ≤ 0. (17)

Eφ {cos(Ψim + Φ)} = 0, 0 ≤ φ ≤ 2π. (18)

And it is straightforward to obtain that

Eφ {cos(Ψim + Φ)} = 0,Eφ {sin(Ψim + Φ)} = 0,

η2nd
yL

(i,m) = 0, η2nd
yL

= KL ·
M∑
i=1

M∑
m=1,
m6=i

η2nd
yL

(i,m) = 0. (19)

Taking the summation of (12) and (19), ηyL is given by

ηyL = η1st
yL

+ η2nd
yL

= KLMexp(jkε)sinc(
kξAe
2L

). (20)

Given (4) and (20), the ACF of the received signal is

ηy(r0, rs) = ηy = ηyL + ηyN + ηN

= KLMexp(jkε)sinc(
kξAe
2L

) +KNNJ0(kp) + σ2I.
(21)

D. ACFS of the Received Signal

In this subsection, we compute the ACFS of the received
signal, i.e., the strength of ACF in (21) by first concluding
and validating 3 properties of ηyL , ηyN and ηyN in (21).

Remark 1. ηyN decays much faster than ηyL .
Remark 2. At high SNRs, ηyN is a constant term σ2, which
dose not impact the ACFS.
Remark 3. Given Remarks 1-2, the ACFS of the received
signal y(t) is dominated by the ACFS of the LOS signal yL(t),
i.e., the normalized ACFS of y(t) at two different locations
r0 and rs can be approximated by

|ηy(r0, rs)|2 = |ηy|2 ≈ |ηyL |2 =

∣∣∣∣sinc(
kξAe
2L

)

∣∣∣∣2 , (22)

which shows a focusing beam in spatial domain (see Fig. 5a).
To validate Remarks 1-3, we build a numerical simulation

system using a massive MIMO antenna array with 100 ele-
ments at carrier frequency f0 = 28GHz. To be consistent with
5G small cell configurations, we set HB = 8m, LBR = 100m,
KL = KN and the multipath number N as an integer randomly
selected between 10 and 100. Note that SNR is 10dB in
Fig. 3 - 5 while Fig. 6 explores the impact of SNR. The
illustrations/definitions of target movement, peak distance p
and moving time t are given in Fig. 7 and Fig. 8.

Given the aforementioned parameters, theoretically, the
peak distance of ηyL is p = 2.86L/kAe ≈ 1.432m, and
p ≈ 0.61λ = 0.0061m corresponding to ηyN , which match
with our simulation results well in the positions of peaks and
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valleys as shown in Fig. 3b and Fig. 4b. Moreover, Fig. 3 and
Fig. 4 clearly shows that the ACFS of the NLOS signal decays
much faster than that of LOS, which validates Remark 1.

Equation (21) indicates that the constant term ηn = σ2I
does not impact ηy much at high SNR (i,e., σ2 is much smaller
compared with KL and KN). In Fig. 6, the theoretical ACFS
according to (22) matches the ACFS directly computed by
E[y(t0)y∗(ts)]) when SNR ≥ 5dB while it deviates a lot
when SNR ≤ 0dB. As a result, Remark 2 is verified. Given
Remarks 1-2 and (21), it is straightforward to conclude that
the ACFS of the received signal y(t) is mainly dominated by
the ACFS of the LOS signal especially when KLOS ≥ KNLOS
in 5G massive MIMO system 1. Thus, Remark 3 and (22)
are verified. Fig. 5 shows the result when KLOS = KNLOS and
SNR = 10dB, which also validates (22).

Note that when the target keeps moving, the line between
the antenna center and r0 (i.e.,

−−→
Or0) may not be perpendicular

1Practical measurements in [49] show that NLOS usually suffers an over
10dB additional path loss than LOS signal in 5G massive MIMO system due
to the greater traveling distance and absorption of corresponding scatterers.

to the line along which the antennas are deployed (i.e.,
−→
Ox).

As shown in Fig. 9,
−−→
Or0 ⊥

−→
Ox does not hold when the

target is moving. In this case, the effective aperture Ae in
(22) should be replaced with Aecosβ. Correspondingly, the
distance L should be replaced by L/cosβ [47].

III. MOVING SPEED AND DIRECTION ESTIMATION

In this section, we first provide an overview of the ACFS
based tracking system. Then, we present a novel ACFS match-
ing method to estimate the moving speed and direction simul-
taneously by leveraging the RF signals only. For description
clarity, we define the range- and cross-range direction in Fig. 7
while the peak distance dp and moving time tp are illustrated
in Fig. 8.

A. Overview of the ACFS Based Tracking System

Consider that a target moves at a speed of v along the line
joining r0 and rs as shown in Fig. 7. The receiver is fixed
on the target and keeps recording signals transmitted from the
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BS with a sample rate fs. The proposed method estimates
the moving trajectory of the receiver, i.e., the location of the
receiver at time ts can be estimated by

rs = rs−1 + ∆rs = rs−1 + v∆t = rs−1 + vp∆t/sinθ, (23)

where rs−1 denotes the location of the receiver at ts−1,
while ∆t = 1/fs denotes the sample period. The proposed
system continuously searches for the peak location rp of the
computed ACFS, i.e., |E[y(t)y∗(t + τ)|2, t = t0, t1, · · · . It
then estimates the consecutive vp and θ, thus yielding the
real-time tracking of a moving target 1. In Fig. 7, we name
v as the absolute speed while vp = vsinθ is the projected
speed which represents the projection of v along the cross-

range direction (i.e.,
−−→
r
′

prp).

B. Projected Speed Estimation
As shown in (22), a moving target keeps receiving signals

transmitted from the massive MIMO antennas on the BS.
Then, the computed ACFS of the measured signal y(t) at
the receiver side is a sampled version of the theoretical ACFS∣∣∣sinc(kξAe

2L )
∣∣∣2, where ξ is the cross-range between r0 and

rs (see Fig. 2 and Fig. 7). As a result, we extract the first

local peak of the theoretical ACFS (
∣∣∣sinc(kξAe

2L )
∣∣∣2). The peak

distance dp in Fig.8 is given by

dp = 2.86L/kAe. (24)

Note that L denotes the distance between the BS center and
the initial location. Similarly, we look for the first local peak
of the computed ACFS of y(t). Then, the moving time tp can
be estimated by

t̂p = argFindPeak
τ∈{0,∆t,2∆t,··· ,TACFS}

{|E[y(t0)y∗(t0 + τ)|2}, (25)

where operation FindPeak{•} means looking for the first
peak and TACFS is the time window length within which the

1In case of outliers, popular smoothing techniques such as moving aver-
age and local regression [54] can be further used to improve the robustness.

first peak may fall in. Given dp and t̂p, the projected speed
estimation is expressed as v̂p = dp/t̂p.

Note that in practice, we first apply a local regression [54]
on the ACFS distribution curve to get rid of the spikes caused
by noise or other distortions. Numerical simulation in Fig.
10 shows that when the signal is corrupted, it is difficult to
find the true peak directly. However, after local regression,
we can get a very good estimation of the true peak. Fig. 10
also shows that a false peak very close to the reference point
(t = 0) may mislead the peak finding and thus induce large
errors. However, this can be eliminated by using peak distance
dp at the previous time (which is known) as a new constraint.
Specifically, the distance L between the BS center and receiver
cannot change much during two adjacent measurements due to
the high sample rate and limited moving velocity. As a result,
dp which is determined by L in (22) cannot change very much
as well.

C. Absolute Speed and Moving Direction Estimation

In addition to the projected speed estimation v̂p, this section
introduces how to estimate the absolute speed and moving
direction of the target in order to track a moving target
continuously. We consider a practical multiple-BS case with
one user/receiver and Q based stations. For notation purpose,
let v̂p,q denote the projected speed estimated from BS q. Note
that the absolute moving speed v of a moving target is unique
and can be estimated by

v =
v̂p,q

sinθq
, q = 1, 2, · · · , Q,

s.t. θq + θl = 180− Ωql, q 6= l, q, l ∈ {1, 2, · · · , Q},
(26)

where θq represents the angle between the moving direction
(−−→r0rs) and the range direction (

−−→
Bqr0) corresponding to station

q centered at Bq (see Fig. 11). In (26), Ωql is the angle among
the initial location r0, station Bl and station Bq with vertex r0,
which is known a priori since the location of the base stations
and the initial location are easy to get in communication
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systems. Fig. 11 gives an example of two base stations, i.e.,
Q = 2. Then, (26) becomes

v =
v̂p,1

sinθ1
=

v̂p,2
sinθ2

,

s.t. θ1 + θ2 = 180− Ω12.
(27)

In (27), v̂p,1 and v̂p,2 can be estimated by using the ACFS
of the received signal as shown in Section III-B and Ω12 is
known a priori. Thus the moving direction θ1 and θ2 can be
estimated by

θ̂1 = arctan
(

v̂p,1sinΩ12

v̂p,2 + v̂p,1cosΩ12

)
,

θ̂2 = arctan
(

v̂p,2sinΩ12

v̂p,1 + v̂p,2cosΩ12

)
.

(28)

To improve the robustness and accuracy, we explore the
different combining pairs of the BSs (Bq,Bl, l 6= q), if
any. Similar to the (B1,B2) pair shown in Fig. 11, we can
further get corresponding projected speed estimations (v̂q, v̂l)
and moving direction estimations (θ̂q, θ̂l). Then, the absolute
speed can be estimated by

v̂ =
1

Q

Q∑
q=1

v̂p,q
sinθq

, q = 1, 2, · · · , Q. (29)

IV. TARGET LOCALIZATION

In this section, the location estimation is first calculated by
integrating the consecutive moving speed and moving direction
estimations. Then, the location estimations from different BS
pairs (Bq,Bl, l 6= q) are fused to improve the robustness and
accuracy. To have a high-level understanding of the algorithm,
the architecture and main steps are summarized in Fig. 12.

Recalling the estimations of the absolute speed v̂ and
moving directions θq(q = 1, 2, · · · , Q) from (28) and (29), as
shown in Fig. 13, the new location rBq

TM
estimated by station q

in the local coordinate system xBqOyBq can be expressed as{
rTM,xBq

= r0,xBq
− dTM cosθq

rTM,yBq
= r0,yBq

+ dTM sinθq
, q = 1, 2, · · · , Q . (30)

where dTM = v̂TM, TM is the updating window length,
meaning that we update the location estimation every TM sec-
onds. (r0,xBq

, r0,yBq
) and (rTM,xBq

, rTM,yBq
) are the coordinates

of the initial location r0 and the new location rBq

TM
at the

local coordinate system xBq
OyBq

shown in Fig. 13. We then
transform the local coordinates of rBq

TM
into the global Cartesian

coordinate system xOy, which is denotes as rqTM
shown in

the magenta color in Fig. 14. As a result, the coordinate
rqTM

= (rqTMx
, rqTMy

) can be calculated by[
rqTMx

rqTMy

]
=

[
rTM,xBq

rTM,yBq

rTM,yBq
− rTM,xBq

][
cosζq
sinζq

]
, (31)

where ζq is the angle between the global Cartesian coordi-
nate system xOy and the local Cartesian coordinate system
xBq

OyBq
, and is known a priori in modern communication

systems. Furthermore, we fuse the location estimations from
different BSs, i.e.,

rTM =
1

Q

Q∑
q=1

rqTM
, q = 1, 2, · · · , Q. (32)

where rqTM
= (rqTMx

, rqTMy
).

Once we get the global coordinates of the new location
rTM = (rTMx, rTMy), the distance between the qth station and
the receiver/target can be updated by

Lnew
BqR =

√
(rTMx −Oxq

)2 + (rTMy −Oyq )2, (33)

where (Oxq , Oyq ) are the coordinates of the qth station center
Bq at the global coordinate system. As a consequence, accord-
ing to (22), the new peak distance dqpNew

corresponding to the
qth BS can be updated by

dqpNew
= 2.86Lnew

BqR/kAe. (34)
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In the next step, we take rTM as the new starting point to
repeat the ACFS computation (based on the data measure-
ments starting at the time-stamp corresponding to rTM ), speed
estimation and localization process, thus getting a location
estimation sequence rTM(t) representing the trajectory of the
moving target.

V. PERFORMANCE ANALYSIS

In this section, we perform theoretical analysis about the
expected error of the speed and location estimation using
the proposed algorithm. Since the system estimates the time
tp corresponding to the first local peak of the computed
ACFS (as in Section III-B), we first derive the distribution
of the peak-location-error (PLE) measured by the distance
that the estimated peak deviates from the true peak. The
expected-error-of-speed-estimation (EES) and the expected-
error-of-localization (EEL) are further derived on the base of
the PLE distribution.

A. Peak Location Error Distribution

To derive the PLE, we first introduce an intermediate
variable peak prominence [55] as shown in Fig. 15, which
indicates the relative height of a peak. In general, a larger
prominence corresponds to a sharper peak and thus the peak
can be localized more accurately. Recalling (21) and Section
II-D, the ACFS is given by

|ηy|2 =

∣∣∣∣KLMsinc(kξAe/2L) +KNNJ0(kp) + σ2

KLM +KNN + σ2

∣∣∣∣2 . (35)

The height ph of the first local peak and height pv of first local
valley of (35) (see Fig. 15) can be expressed as

ph =

∣∣∣∣0.22KLM + 0.01KNN + σ2

KLM +KNN + σ2

∣∣∣∣2 .
pv =

∣∣∣∣ σ2

KLM +KNN + σ2

∣∣∣∣2 .
(36)

where we have sinc(kξ0Ae/2L) = 0.22 and J0(kp) = 0.01
while ξ0 is the first local peak location of (35) and p =√

ξ2
0 + ε2 ≥ ξ0 = vtsinθ (see Fig. 7). Then, the prominence

ppro of the first local peak of (35) in the unit of decibel (dB)
can be expressed as

ppro = 10log10[ph − pv]

= 10log10

∣∣∣∣0.22KLM + 0.01KNN + σ2

σ2

∣∣∣∣2 . (37)

Note that SNR is defined as SNR = 20log10(KLM/σ2).
Consequently, the prominence ppro can be rewritten as

ppro =

10log10

∣∣∣∣∣0.21KLM + 0.01KNN +KLM · 10
−SNR
20

KLM · 10
−SNR
20

∣∣∣∣∣
2

.
(38)

To have a better standing, Fig. 15 shows the peak prominence
versus difference SNRs. It is clear that the prominence ppro
increases monotonically with the increment of SNR, thus
improving the peak localization accuracy. Note that the system
needs to estimate the moving distance of the target every TM
seconds as introduced in (30). As a result, we have to repeat
the peak finding process for a large number of times to track a
moving target. Then, by using the Central Limit Theorem [56],
the expectation of the PLE denoted by perr can be assumed to
follow a Gaussian distribution, i.e., the PDF of the perr can be
expressed as

f(perr) = H(ppro)exp(− p2
err

2G(ppro)2
), (39)

where H(ppro) is the coefficient function while G(ppro) de-
notes the standard deviation function (SDF). Since perr de-
creases with the increment of SNR, H(ppro) is a monotonically
increasing function while G(ppro) is a decreasing function. It
is preferable that H(ppro) grows slowly and G(ppro) decreases
slowly as their arguments increase. Here we propose a pair of
empirical approximations about H(ppro) and G(ppro) by 5000
Monte Carlo experiments, i.e.,

H(ppro) = 186
√

10log10(ppro),

G(ppro) =
1

10
√

10log10(ppro)
.

(40)

Fig. 16 shows that the PDF f(perr) with H(ppro) and G(ppro)
given in (40) can well approximate the distribution of the PLE.
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Consequently, the expectation of |perr| can be calculated by

E{|perr|} =

∫ ∞
−∞
|perr|f(perr) = 2G(ppro)2 ·H(ppro). (41)

B. Expected Error of the Speed and Location Estimations

Similar to the scenario in Section III, a target is assumed
to move at a speed of v along the line joining r0 and rs
and receive signals from Q nearby BSs. Given the estimation
t̂p = N∆t where N is the integer denoting the sample index
in Section III-B, the expected moving-time-estimation error
caused by the |perr| at BS q can be expressed as

t̂qperr
=

(
∆N +

⌊
E{|perr|}
vsinθq∆t

⌋)
·∆t, q = 1, 2, · · · , Q, (42)

where ∆N ∈ {0,±1} represents the quantization error. As a
result, the EES is given by

v̂err =
1

Q

Q∑
q=1

∣∣∣∣ dqp

t̂qpsinθq
−

dqp

sinθq(t̂
q
p ± t̂qperr)

∣∣∣∣
=

1

Q

Q∑
q=1

dqpt̂
q
perr

sinθq t̂
q
p(t̂

q
p ± t̂qperr)

=
1

Q

Q∑
q=1

v̂q t̂qperr

(t̂qp ± t̂qperr)
,

(43)

where v̂q = v̂qp
/

sinθq denotes the speed estimation corre-
sponding to the qth BS. Then, the EEL can be expressed as
rerr
TM

= v̂errTM.

VI. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the
performance of the proposed method based on a 5G com-
munication system. The default parameter used in the Monte
Carlo experiments are listed in Table I, if not otherwise
stated. In summary, six experiments are performed to evaluate
the proposed approach: i) overall performance; ii) speed and
location estimation error; iii) impact of the number of antennas
M ; iv) impact of the sample rate; v) impact of the SNR; vi)
comparison with existing works.

TABLE I: Parameters used in the simulations

Sample frequency fs 28GHz
Number of antennas M 100

Coverage of 5G base station 200m
Signal-to-noise-ratio SNR 10dB

LOS and NLOS power KL ≥ KN

Number of NLOS signal N
Integer randomly

selected from [10, 100]
Number of base station Q 2

Speed of the target v within [5, 30]m/s

A. Overall Performance

Assume the SNR is 10dB, Fig. 17 depicts the simulation
result when the target moves with a variable acceleration from
t = 0s to t = 2s, a constant speed from t = 2s to t = 4s and a
variable deceleration from t = 4s to t = 5s. Table II shows 12
different moving situations including different initial speeds,
accelerations, decelerations and turning angles to further verify
the proposed method. For example, in situation ‘11’, the target
starts moving at a speed of 5m/s, acceleration of 7m/s2 and
angle (i.e., θ1 in Fig. 11a) of 45 degrees. Moreover, the
acceleration is also varying with a rate of 3m/s2. Similarly,
the angle θ1 is changing at a rate of 3 degree per second to
create a curved trajectory. Overall, we can conclude that our
method can track the moving object with decimeter or even
better centimeter accuracy in different scenarios.

B. Speed and Location Estimation Error

To evaluate the error of speed estimation (ES) and error
of localization (EL), we conduct 1000 independent Monte
Carlo simulations in which the target moves at variable speeds
along a curved trajectory. The SNR is fixed at 10dB and
the error distribution is shown in Fig. 18. Then, the em-
pirical cumulative distribution function (CDF) corresponding
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TABLE II: Mean velocity and location estimation error in different situations

Situation
Velocity Angle RMSE of velocity RMSE of location

Initial Acceleration Initial Acceleration estimation error estimation error
(m/s) (m/s2) (◦) (◦/s2) (cm/s) (cm)

1 10 0 1 40 0 2 44.32 5.45
2 10 0 45 2 2 45.61 10.36
3 10 0 50 6 40.67 9.44
4 20 0 45 0 57.89 18.81
5 20 0 60 6 69.63 11.28
6 30 0 40 0 78.21 19.33
7 30 0 65 3 81.41 15.23
8 5 6 1 45 0 47.93 14.21
9 5 6 (2) 3 40 0 44.04 10.66
10 5 6 (2) 3 50 2 35.47 24.89
11 5 7 (3) 3 45 3 47.87 13.77

1 Acceleration of the velocity being 0 means the velocity is constant while nonzero means it is changing as the target is moving.
2 Acceleration of the angle being 0 means direction angle is constant, i.e., the trajectory is a straight while nonzero means the

direction is changing, which indicates a curved trajectory.
3 The number in the bracket () means the acceleration is also changing during the process.

to different velocities (v = 10m/s, 20m/s, 30m/s) is given
in Fig. 19. As illustrated in Fig. 18, our method achieves
high-accuracy speed estimation results with a median error
of 0.4m/s. Fig. 19 indicates that the median speed estimation
errors are about 0.18m/s, 0.26m/s and 0.45m/s while the cor-
responding location errors are about 0.06m, 0.12m and 0.53m.
Moreover, when v ≤ 20m/s(45mph), the 80 percentile of the
speed estimation error is within 0.25m/s while the location
estimation error is less than 0.2m. Therefore, our method has
a promising performance in urban areas where v ≤ 20m/s
generally holds and there are strong NLOS. Moreover, Fig.
18b shows that the location estimation error accumulates at
a moderate rate as the object moves continuously. This is
mainly because the estimation of the next location is highly
dependent on the previous location estimation result, which
causes accumulative errors. Another possible reason is that
SNR of the received signal drops with the target moving
towards cell boundary. In the future, locations of the nearby
BSs may be used to mitigate the accumulative error, which
we leave for future work.

C. Impact of the Number of Antennas

Fig. 20 shows the root mean square error (RMSE) of the
speed and location estimation versus different antenna number
M. Evidently, both the speed and location estimation accuracy
are improved with the increment of M. Specifically, when M
is less than 100, it may not work well when the velocity is
too high (e.g., v =30m/s). However, our system can localize
the target within 0.3m error when M is no less than 100. This
is because that as M increases, we can harvest more signal
components and thus get more accurate ACFS estimation. And
the performance starts to saturate when M ≥ 200. Note that
when M approaches to 400, the location estimation error can
be as low as 8cm.

D. Impact of the Sample Rate

Fig. 21 further explores impacts of the sample rate on our
method. In general, higher sample rate improves the estimation
accuracy. For a fixed sample rate, the object moving at a higher
speed suffers from a worse location accuracy than that moving
at a lower speed, which is consistent with (42). Moreover, Fig.
21 demonstrates that the minimum sample rate is a moderate
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Fig. 18: Estimation error distribution.
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Fig. 19: CDF of estimation error.
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Fig. 20: Estimation error versus antenna number.
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Fig. 21: Estimation error versus sample rate.
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Fig. 22: Estimation error versus SNRs.
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Fig. 23: Location error versus the number of stations.

value about 500Hz. Further reducing the sample rate may lead
to worse speed estimation error or even failure especially for
high-speed objects, e.g., v =30m/s. When the sample rate
further increases, such as 3000Hz, the speed estimation error is
no greater than 0.6m/s while the minimum location estimation
error is about 10.8cm.

E. Impact of SNR and the Number of Stations

Fig. 22 explores the system performance versus different
SNRs with M = 100 and a sample rate 1000Hz. The EES and
EEL are shown in dotted lines with corresponding markers.
Clearly, the system is seriously impacted by noise when SNR
is less than 10dB and does not work when the target moves at
30m/s if SNR further decreases to 0dB. Moreover, the object
with a higher speed shows a worse estimation error than that
with a lower speed. However, in all the scenarios, our method
works well when SNR is no less than 10dB, which is easy to
meet in a typical communication system.

F. Impact the Number of Stations

A unique feature of the proposed method is that it jointly
explores the directional ACFS distribution of the received
signal and the geometric relationship among multiple base
stations to estimate the moving direction of a target without
any further information. We investigate how the performance
would change with the number of base stations. As shown in
Fig. 23, the performance is improved by fusing the informa-
tion from more surrounding stations. However, the proposed
system can achieve very good location accuracy with only
2 stations. In practice, users can flexibly select the number
of stations according to the requirements of system latency,
complexity and accuracy for real applications.

G. Comparison with Existing Works

In this section, we compare the proposed method with
corresponding existing works in the aspect of speed, direction,
location estimation accuracy and complexity. To simulate
a typical localization and tracking scenario, we assume a
moving target which continues recording signals transmitted
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Fig. 24: Performance comparison.

from 2 surrounding 5G massive MIMO base stations. The 2
stations are 200m away from each other and equipped with
M = 100 antennas on each station. Considering the rich-
scattering urban environment, we randomly choose N (within
10 to 100) NLOS components1 while the impinging angles
follow uniform distributions over (−π, π]. The target starts to
move at a speed of 5m/s, accelerates 2s, then keeps constant
speed for 2s and finally decelerates until end. In total, the
target moves 80ms away from the starting point 2.
Speed estimation: Fig. 24a compares the speed estimation
performance of the proposed system with the existing Sen-
Speed [57], WiFiDetect [58] and GPS [59] methods. Clearly,
our method outperforms the benchmark algorithms in accu-
racy. Specifically, SenSpeed estimates the speed by assum-
ing that the error of the integrated acceleration accumulates
linearly over time, which dose not always hold in practice.
WiFiDetect considers only 1 dominant NLOS signal and GPS
method relies on the LOS signal greatly, which is vulnerable
to NLOS distortions in urban rich-scattering environments.
However, by exploring the ACFS of the received signal,
the proposed method treats all the LOS and NLOS signal
components as a whole and thus improves the accuracy.
Direction estimation: Fig. 24b shows that the proposed
system can achieve 1.8◦ direction estimation accuracy, with
improvement than the existing DOA approaches, i.e., Capon
[60], ESPRIT [21] and MUSIC [20]. This mainly benefits
from the ACFS which has been proved to be tolerable to
NLOS distortions. On the contrary, most DOA approaches
are highly dependent on the time measurement accuracy of
the LOS signal, which is easily to be distorted/impacted by
NLOS signals in practice.
Location estimation: Fig. 24c demonstrates the location
accuracy of the proposed method and the state-of-the-art
techniques including DiSouL [23], Conv-fingerprint [31] and
DNN-fingerprint [32]. From Fig. 24c, the proposed method
can achieve less than 0.2m error with the percentile ≥ 95%.
However, the 95% percentile estimation error of the DNN-
fingerprint is 1.2m while both Conv-fingerprint and DiSouL
cannot offer ≥ 95% confidence with less than 2m error.

1Many practical measurements in New York City [45], [46] validated that
the number of dominate NLOS signal usually varies from 10 to 100.

2After moving 80m, the target is about 180m from one of the two stations,
which is close to the cell boundary of the station. In this case, we need to
switch to closer base stations, and detailed cell switching procedure is out of
the scope of this paper.

TABLE III: Computational complexity comparisons

Algorithms Computational complexity
DiSouL O{f2

s /TM(QL+
∑
q Nq)

3.5}
Proposed O{(Qfs + fs +Q2 + 7Q)fs/TM}

New notations
TM output estimated location every TM seconds.
L number of location grid in candidate area
Nq number of NLOS components at station q

Overall, our method is more robust because it explores the
statistical ACFS of the received signal which is very stable
in 5G massive MIMO systems regardless of the environment.
However, fingerprint-based methods may suffer from finger-
print mismatch issue due to the change of the wireless propa-
gation environment, thus degrading the accuracy. In dynamic
environments, DiSouL works even worse because there are
two hyperparameters in the model, which are sensitive to the
environment changes.
Complexity: Considering that complexity is very important
for real-time tracking and navigation applications with a
stringent requirement on the latency, Table III compares the
complexity between our algorithm and the state-of-the-art
DiSouL [23] approach. In DiSouL, the main computation
comes from solving the second-order cone program (SOCP)
problem, which is about (QL+

∑
q Nq)

3.5 in a single snapshot
[23]. Our computation is mainly caused by ACFS computa-
tion, 1-dimension peak searching in Eq.(25) and the location
computation from Eq.(28) to Eq.(32), which are Qfs, fs, and
Q2 + 7Q respectively. Since L ≥ Q, our method is much
cheaper than DiSouL.

Note that we do not compare with Conv-fingerprint [31]
and DNN-fingerprint [32] here because they are all training
based methods in which the overhead in map construction
stage is hard to be quantified. To improve accuracy, fingerprint-
based methods usually require a lot of training and updating
to construct the offline map, which leads to a prohibitive
overhead especially in a dynamic environment.

VII. CONCLUSION

This paper proposes a high-accuracy target location method
based on the 5G massive MIMO system. We first prove the

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 22,2021 at 03:27:53 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3050720, IEEE Internet of
Things Journal

13

existence of a sinc-like focusing beam in a massive MIMO
system by computing the statistical autocorrelation of the
received signal in far-filed scenario. Based on the focusing
beam, a speed estimation algorithm is then proposed by jointly
using the relative speed estimations with respect to multiple
BSs. Give an initial point, we develop a target localization
method by further using the geometrical relationships between
multiple BSs. Theoretical error analysis and extensive numer-
ical simulations show that our method can achieve decimeter
localization accuracy by computing ACFS of the received
signal, which outperforms many prior works in accuracy and
cost.

APPENDIX

In this appendix, we prove (3), i.e., ηy(r0, rs) =
E[y(t0)y∗(ts)] ≈ ηyL + ηyN + ηn. Mathematically, the ACF
of the received signal y(t) given by

ηy(r0, rs) = E[y(t0)y∗(ts)] = ηLL∗ + ηLN∗ + ηLn∗

+ ηNL∗ + ηNN∗ + ηNn∗ + ηnL∗ + ηnN∗ + ηnn∗

ηLL∗ = E[yL(t0)y∗L(ts)], ηLN∗ = E[yL(t0)y∗N(ts)],

ηLn∗ = E[yL(t0)n∗(ts)], ηNL∗ = E[yN(t0)y∗L(ts)],

ηNN∗ = E[yN(t0)y∗N(ts)], ηNn∗ = E[yN(t0)n∗(ts)],

ηnL∗ = E[n(t0)y∗L(ts)], ηnN∗ = E[n(t0)y∗N(ts)],

ηnn∗ = E[n(t0)n∗(ts)] = σ2I.

(44)

Referring to our derivations from (14) to (19), it is easy to
obtain

ηLN∗ =
M∑
i=1

N∑
n=1

ηy(LN∗)i,n =
M∑
i=1

N∑
n=1

Eφ {exp[j(ψi,0 − ωdtscosαn + φi − φn)]} = 0,

ηy(Ln∗) = E[yLOS]E[n∗(ts)] = 0,

(45)

given the fact that φi and φn are assumed to be uniform
distribution over (−π, π] and the signal components yL and yN
are independent with noise. Similarly, we can get ηy(NL∗) =
0, ηy(Nn∗) = 0, ηy(nL∗) = 0, ηy(nN∗) = 0. As a conse-
quence, ηy(r0, rs) can be simplified as

ηy(r0, rs) =ηy(LL∗) + ηy(NN∗) + ηy(nn∗).
= ηyL + ηyN + ηn

(46)

Thus, the proof is completed.
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