
HIGH ACCURACY TRACKING OF TARGETS USING MASSIVE MIMO

Xiaolu Zeng>, Feng Zhang>†, Beibei Wang>† and K. J. Ray Liu>†

>University of Marland, College Park, MD 20742, USA.
† Origin Wireless Inc., 7500 Greenway Center Drive, Suite 1070, MD 20770, USA.

ABSTRACT

While high accuracy tracking of targets has been extensively
explored because of its wide applications, many exiting meth-
ods degenerate in the presence of multipath distortions. This
paper proposes an accurate and novel multipath-resilient sys-
tem to track the targets by leveraging the large number of an-
tennas in massive MIMO systems. We first prove that statisti-
cal autocorrelation of the received energy physically shows a
sinc-like distribution around the receiver in far-field scenario.
Based on such an observation, a novel method is developed
to estimate the moving speed of the target with respect to a
single base station. The absolute moving speed and direction
are further estimated by using the geometrical relationships
among multiple base stations and thus we can track the target
by dead-reckoning using the consecutive moving speed and
moving direction estimations. Numerical simulations show
that the proposed system can achieve decimeter-lever accu-
racy for tracking in various environments, which outperforms
the existing methods.

Index Terms— target tracking, massive MIMO, decimeter-
level accuracy, multipath-resilient

1. INTRODUCTION

Target tracking plays an important role in modern life with
wide applications in autonomous driving and navigation sys-
tems. Although the global positioning system (GPS) [1] can
achieve good accuracy for the real-time tracking of outdoor
targets, it requires an unobstructed line-of-sight (LOS) path
to at least four GPS satellites. However, its performance de-
grades seriously when the LOS signal is blocked, especially
in urban areas where the LOS signal is often blocked by tall
buildings. As a result, it is of great importance to explore a
real-time tracking method which can achieve high accuracy
while working robustly in both LOS and non-line-of-sight
(NLOS) scenarios [2–4].

In principle, tracking methods can be classified into two
categories, i.e., triangulation-based methods and fingerprinting-
based methods. Triangulation-based methods firstly esti-
mate the direction-of-arrival (DOA) [5–7], time-of-arrival
(TOA) [8] with respect to all the stations. Then, triangular

relationships among multiple stations are leveraged to esti-
mate the location of the target and subsequently track the
target timely. Fingerprinting-based methods first construct an
offline database of positions together with corresponding sig-
natures such as received signal strength (RSS) [9] and channel
state information (CSI) [10, 11] in the area of interest. Then,
the online signatures are measured and matched with the of-
fline database to estimate the location of the target. However,
triangulation-based methods degenerate significantly in the
presence of multipath/NLOS signals since only LOS signal
is useful for DOA/TOA estimations. Fingerprinting-based
methods usually suffer from a prohibitive overhead to con-
struct and update the offline database especially in dynamic
environments.

Different from the existing methods, this paper develops
a high accuracy tracking system by exploring the statistical
property, i.e., autocorrelation function (ACFS) of the re-
ceived signal in massive MIMO systems [12–14]. The ACFS
is proved to be a stable sinc-like focusing beam around the
receiver in which the stability comes from the fact that the
received signal in massive MIMO system contains a large
number of LOS and NLOS signal components. Based on the
ACFS, we then develops an algorithm to estimate the moving
speed and direction of the target and thus can track a target
timely. The proposed tracking system is multipath-resilient
because the ACFS is stable regardless of the environments.
In addition, it also enjoys a low complexity because we only
need to compute the ACFS of the received signal while it is
very straightforward to calculate the location of the target by
using the derived close-form expressions. The system can
support massive concurrent targets/clients without affecting
the channel capacity since a target/client only listens to the
BSs. Extensive simulation results demonstrate that the pro-
posed system can track a target with decimeter-level accuracy,
which shows superiority than the benchmark algorithms.

The rest of the paper is organized as follows. We first
present the signal model followed by the focusing beam
derivation in Section 2. Section 3 introduces the speed esti-
mation and tracking method. System performance is evalu-
ated by numerical simulations in Section 4. Finally, Section
5 concludes the paper.
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Fig. 1: 3-dimensional signal propagation geometry.

2. SIGNAL MODEL AND FOCUS BEAM IN
MASSIVE MIMO

This section first introduces the signal model and then derives
ACFS of the received signal, whose distribution exhibits a fo-
cusing beam around the receiver in massive MIMO systems.

2.1. Signal Model

As shown in Fig. 1, a receiver fixed on a mobile object re-
ceives the signal coming from a base station (BS) with M
antennas. ‘B’ and rt represents the center of the base station
and receiver location at time t respectively. HB and LBR de-
note the altitude of the BS and the horizontal distance between
the BS and the receiver. Ae is the aperture of the antenna A.
Then, the received signal consisting of LOS and NLOS signal
components can be expressed as [15–17]

y(t) = yL(t) + yN(t) + n(t),

yL(t) =
√
KL

M∑
m=1

exp(j(k|xmrt|+ φm))

4π|xmrt|
,

yN(t) =
√
KN

N∑
n=1

exp[j(ωdtcosαn + φn)],

(1)

where yL(t) and yN(t) represent LOS and NLOS component
with power coefficient KL and KN. k = 2π/λ denotes the
wave number where λ is the wave length. ωd is the maxi-
mum Doppler frequency. xm and rt are the coordinates of the
m-th antenna and the receiver at time t, respectively, |xmrt|
denotes the distance between xm and rt. n(t) is the addi-
tive Gaussian noise while φm is the phase distortion of the
m-th LOS signal. αn and φn are the DOA and phase dis-
tortion of the n-th NLOS signal component. In general, φm,
αn, and φn can be assumed as i.i.d uniformly distributed over
[−π, π) [18]. In far-filed scenario where LBR ≥ 10HB � Ae
holds, the 3-dimensional signal propagation geometry in Fig.
1 can be simplified as a 2-dimensional version shown in Fig.
2 in which we omit the NLOS signals since their DOAs are
assumed to be uniform distributed over [−π, π). r0 and rs
represents the location of the target at t0 and ts while L =√
L2

BR +H2
B.
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Fig. 2: 2-dimensional signal propagation geometry.

2.2. Focusing Beam Derivation

In this part, we derive the ACF of the received signal which
shows a stable distribution in spatial domain around the re-
ceiver and thus can be used for target tracking. Recalling (1),
the ACF of the received signal can be expressed as

ηy(r0, rs) = E[y(t0)y∗(ts)] ≈ ηyL + ηyN + ηn, (2)

where ηyN = KNNJ0(kp) (see [18, 19]). E represents expec-
tation operator and J0(·) is the 0-order Bessel function while
p denotes the distance between r0 to rs as shown in Fig. 2.
Next, the ACF of the LOS signal can be given by

ηyL = ηyL(r0, rs) = E[yL(t0)y∗L(ts)] = KL·
M∑
i=1

M∑
m=1

Eφ
{

exp[j(k(|xir0| − |xmrs|) + φi − φm)]

(4π)2|xir0||xmrs|

}
,

(3)

where Eφ means expectation over variable φ. Given the far-
field condition (LBR � Ae), we can assume |xir0| ≈ |xmrs|
in the denominator of (3). However, similar approximation is
not applicable in the numerator of (3) because the phase term
in (3) will change 2π whenever |xir0| − |xmrs| changes by
λ = 1/fc, which is very small for 5G communication system
because of the high carrier frequency fc [20].

Next, we decompose (3) into two different cases, i.e., a)
i = m and b) i 6= m. When i = m, we have

η1st
yL

= KL

M∑
m=1

exp(jk(|xmr0| − |xmrs|)), (4)

where ∣∣∣|xmr0| − |xmrs|
∣∣∣ ≈ pcosβm =

−Lε + xmξ√
L2 + x2

m

≈ −ε + xmξ/L.

(5)

We note that the derivation of (5) takes the far-filed condition
that LBR ≥ 10HB � Ae. Substituting (5) into (3), η1st

yL
can be

computed as

η1st
yL

= exp(jkε)

M∑
m=1

exp(−jkxmξ/L)

=
Aeexp(jkε)

d
sinc(

kξAe
2L

)

, (6)
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where sinc(t) = sin(t)/t is the Sinc function. Next, when
i 6= m, we have

η2nd
yL

= KL·
M∑
i=1

M∑
m=1,
m6=i

Eφ{exp[j(k(|xir0| − |xmrs|) + φi − φm)]}. (7)

The (i,m) pair of (7) is expressed as

η2nd
yL

(i,m) = Eφ{exp (ψi,0 − ψm,s)︸ ︷︷ ︸
Ψim

+ (φi − φm)︸ ︷︷ ︸
Φ

]}

= Eφ{cos(Ψim + Φ)}+ jEφ{(sin(Ψim + Φ))},
(8)

where ψi,0 = k|xir0|, ψm,s = k|xmrs|. Since φi and φm are
uniformly distributed over [−π, π), we have

Eφ {cos(Ψim + Φ)} = 0, Eφ {sin(Ψim + Φ)} = 0. (9)

As a result, we have

η2nd
yL

= KL ·
M∑
i=1

M∑
m=1,
m 6=i

η2nd
yL

(i,m) = 0. (10)

Given η1st
yL

in (6), η2nd
yL

in (10) and ηyN = KNNJ0(kp), the
ACF of the received signal can be expressed as

ηy(r0, rs) = (11)

Aeexp(jkε)

d
sinc(

kξAe
2L

) +KNNJ0(kp) + σ2I, (12)

where σ2 is the power spectral density of the noise n(t). In
(12), KNNJ0(kp) decays much faster than sinc(kξAe

2L ) while
σ2 is a constant. As a result, after normalization and taking
the square, we can get the approximation of ACFS, i.e.,

|ηy(r0, rs)|2 =

∣∣∣∣sinc(
kξAe
2L

)

∣∣∣∣2. (13)

Note that we omit the proof details which will be given
in our future work due to the length limitation of the paper.
Simulation in Fig. 3 validates that the ACFS demonstrates a
beam pattern around the intended location (ε = 0, ξ = 0).

3. SPEED ESTIMATION AND TARGET TRACKING

As shown in Fig. 3 , a moving target (from r0 to rs) keeps
recording signals from the massive MIMO antennas on the
BS. Then, the computed ACFS of the measured signal y(t)

is a sampled version of the theoretical ACFS
∣∣∣sinc(kξAe

2L )
∣∣∣2.

As a result, when the target reaches to the first local peak
rp starting from r0, the peak distance dp in Fig. 4 can be
estimated by extracting the first local peak of the theoretical
ACFS and given by

dp = 2.86L/kAe. (14)

Similarly, the moving time t̂p from r0 to rp can be estimated
by looking for the first local peak of the computed ACFS of
y(t), i.e.,

t̂p = argFindPeak
τ∈{0,∆t,2∆t,··· ,TACFS}

{|E[y(t0)y∗(t0 + τ)|2}, (15)

where operation FindPeak{•} means looking for the first
peak and TACFS is the time window length within which the
first peak may fall in. Given dp and t̂p, the projected speed
(see Fig. 3) is estimated by v̂p = dp/t̂p.

Consider a practical case where a target can receive sig-
nals from Q nearby stations, the absolute speed can be given
byv =

v̂p,q
sinθq

, q = 1, 2, · · · , Q,

θq + θl = 180− Ωql, q 6= l, q, l ∈ {1, 2, · · · , Q},
(16)

where θq represents the angle between the moving direction
and the line joining the target and center of station q (see Fig.
3). In (16), Ωql is the angle between Blr0 and Bqr0 with
vertex r0 (e.g., i = 1, q = 2 in Fig. 5), which is known
a priori since the location of the base stations and the initial
location are easy to get in communication systems. Fig. 5
gives an example of two base stations, i.e., Q = 2. By solving
(16), we can get the moving speed v and also the moving
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direction θq estimations simultaneously. Then, the location
of the receiver at ts+1 can be estimated by

rs+1 = rs + ∆rs = rs +−→v ∆t (17)

where ∆t is the moving time window during which we as-
sume that moving speed is constant. Note that ∆t is flexi-
ble with a recommendation of ≤ 0.1s in practice. −→v is the
velocity vector with module v and direction θq . Next, we
update rs+1 as the new starting point and repeat the above
ACFS computation, moving speed and direction estimation,
thus achieve real-time tracking of a moving target.

4. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the per-
formance of the proposed method based on a 5G communi-
cation system with carrier frequency fc = 28GHz [20] and
antenna number M = 100.

4.1. Speed Estimation Results

Fig. 6 shows the speed estimation results during which the
targets starts moving at 5m/s. Then it accelerates with a vari-
able acceleration from t = 0s to t = 3s and moves at a con-
stant speed from t = 3s to t = 5.5s. Finally, it decelerates
with a variable deceleration from t = 5.5s to t = 8s. In to-
tal, it moves about 100m away from the starting point. From
Fig. 6, more than 95% speed estimation errors are less than
0.35m/s, which indicates that our method can achieve accu-
rate speed estimations for a practical moving target with dif-
ferent speeds, accelerations and decelerations. Note that it is
reasonable for the speed estimation error to fluctuate within a
certain extent because the geometrical relationship among the
stations and the target varies when the target moves to target
locations.

4.2. Performance in Tracking Location Error

To evaluate the location error of the proposed tracking sys-
tem, we conduct 1000 independent Monte Carlo simulations

in which the target moves at variable speeds along a curved
trajectory while SNR is fixed at 10dB. Considering the cover-
age of 5G massive MIMO base stations, the distance between
the target and base stations is limited to less than 200m. The
number of multipaths is randomly chosen from 10 to 100 in
different Monte Carlo trials (driven by the practical measure-
ments in the New York City [21]). Fig. 7 shows the tracking
location errors at 10 representative locations of the target on
the trajectory. From Fig. 7, the medium error is less than
0.1m when the moving distance is less than 50m while the
maximum location error is less than 0.3m, which shows ro-
bust decimeter-level tracking accuracy under different NLOS
distortions.

Fig. 8 compares the proposed method with the latest
triangulation-based DiSouL [12] and DNN-fingerprint [13]
methods. As depicted in Fig. 8, the 90 percentile error of
our method is 0.18m and DNN-fingerprint demonstrates a
1.2m estimation error. DiSouL cannot achieve less than 2m
estimation errors of 90 percentile. Overall, our method is
more robust and outperforms the benchmark DiSouL and
DNN-fingerprint methods. This is mainly because of the
stable statistical distribution of the ACFS of the received
signal in a 5G massive MIMO system, while DiSouL relies
on two environment-sensitive hyper-parameters in the sparse
signal model and the offline database in DNN-fingerprint is
vulnerable to dynamic environments.

5. CONCLUSION

This paper presents a novel target tracking method in a 5G
massive MIMO system. We prove that the ACFS of the re-
ceived signal in a massive MIMO system shows a sinc-like
focusing beam around the receiver in spatial domain. By
considering the geometrical relationship between multiple
stations and the target, a speed estimation and tracking al-
gorithm is developed. Numerical simulations show that our
method can achieve decimeter-level accuracy in different
environments for targets moving at different speeds, accel-
erations and decelerations, which outperforms the existing
solutions.
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