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Abstract—Due to the severe multipath effect, no satisfactory
device-free methods have ever been found for indoor speed
estimation problem, especially in non-line-of-sight scenarios,
where the direct path between the source and observer is blocked.
In this paper, we present WiSpeed, a universal low-complexity
indoor speed estimation system leveraging radio signals, such as
commercial WiFi, LTE, 5G, etc., which can work in both device-
free and device-based situations. By exploiting the statistical
theory of electromagnetic waves, we establish a link between
the autocorrelation function of the physical layer channel state
information and the speed of a moving object, which lays
the foundation of WiSpeed. WiSpeed differs from the other
schemes requiring strong line-of-sight conditions between the
source and observer in that it embraces the rich-scattering
environment typical for indoors to facilitate highly accurate speed
estimation. Moreover, as a calibration-free system, WiSpeed saves
the users’ efforts from large-scale training and fine-tuning of
system parameters. In addition, WiSpeed could extract the stride
length as well as detect abnormal activities such as falling down,
a major threat to seniors that leads to a large number of fatalities
every year. Extensive experiments show that WiSpeed achieves a
mean absolute percentage error of 4.85% for device-free human
walking speed estimation and 4.62% for device-based speed
estimation, and a detection rate of 95% without false alarms
for fall detection.

I. INTRODUCTION

As people are spending more and more their time indoors
nowadays, understanding their daily indoor activities will
become a necessity for future life. Since the speed of the
human body is one of the key physical parameters that can
characterize the types of human activities, speed estimation of
human motions is a critical module in human activity monitor-
ing systems. Compared with traditional wearable sensor-based
approaches, device-free speed estimation is more promising
due to its better user experience, which can be applied in a
wide variety of applications, such as smart homes [1], health
care [2], fitness tracking [3], and entertainment.

Nevertheless, indoor device-free speed estimation is very
challenging mainly due to the severe multipath propagations
of signals and the blockage between the monitoring devices
and the objects under monitoring. Conventional approaches
of motion sensing require specialized devices, ranging from
RADAR, SONAR, laser, to camera. Among them, the vision-
based schemes [4] can only perform motion monitoring in
their fields of vision with performance degradation in dim light
conditions. Also, they introduce privacy issues. Meanwhile, the

speed estimation produced by RADAR or SONAR [5] varies
for different moving directions, mainly because of the fact
that the speed estimation is derived from the Doppler shift
which is relevant to the moving direction of an object. Also,
the multipath propagations of indoor spaces further undermine
the efficacy of RADAR and SONAR.

More recently, WiGait [6] and WiDar [7] are proposed to
measure gait velocity and stride length in indoor environments
using radio signals. However, WiGait uses specialized hard-
ware to send Frequency Modulated Carrier Wave (FMCW)
probing signals, and it requires a bandwidth as large as
1.69 GHz to resolve the multipath components. On the other
hand, WiDar can only work well under a strong line-of-sight
(LOS) condition and a dense deployment of WiFi devices
since its performance relies heavily on the accuracy of ray
tracing/geometry techniques.

In this paper, we present WiSpeed, a robust universal
speed estimator for human motions in a rich-scattering indoor
environment, which can estimate the speed of a moving
object under either the device-free or device-based condition.
WiSpeed is actually a fundamental principle which requires no
specific hardware as it can simply utilize only a single pair of
commercial off-the-shelf WiFi devices. First, we characterize
the impact of motions on the autocorrelation function (ACF) of
the received electric field of electromagnetic (EM) waves using
the statistical theory of EM waves. However, the received
electric field is a vector and it cannot be easily measured.
Therefore, we further derive the relation between the ACF
of the power of the received electric field and the speed of
motions, since the electric field power is directly measurable
on commercial WiFi devices [8]. By analyzing different com-
ponents of the ACF, we find that the first local peak of the
ACF differential contains the crucial information of speed of
motions, and we propose a novel peak identification algorithm
to extract the speed. Furthermore, the number of steps and the
stride length can be estimated as a byproduct of the speed
estimation. In addition, fall can be detected from the patterns
of the speed estimation.

To assess the performance of WiSpeed, we conduct exten-
sive experiments in two scenarios, namely, human walking
monitoring and human fall detection. For human walking mon-
itoring, the accuracy of WiSpeed is evaluated by comparing
the estimated walking distances with the ground-truths. Exper-
imental results show that WiSpeed achieves a mean absolute
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percentage error (MAPE) of 4.85% for the case when the
human does not carry the device and a MAPE of 4.62% for the
case when the subject carries the device. In addition, WiSpeed
can extract the stride lengths and estimates the number of steps
from the pattern of the speed estimation under the device-
free setting. In terms of human fall detection, WiSpeed is
able to differentiate falls from other normal activities, such
as sitting down, standing up, picking up items, and walking.
The average detection rate is 95% with no false alarms. To the
best of our knowledge, WiSpeed is the first device-free/device-
based wireless speed estimator for motions that achieves high
estimation accuracy, high detection rate, low deployment cost,
large coverage, low computational complexity, and privacy
preserving at the same time.

Since WiFi infrastructure is readily available for most indoor
spaces, WiSpeed is a low-cost solution that can be deployed
widely. WiSpeed would enable a large number of important
indoor applications such as

1) Indoor fitness tracking: More and more people become
aware of their physical conditions and are thus interested
in acknowledging their amount of exercise on a daily
basis. WiSpeed can assess a person’s exercise amount
by the estimation of the number of steps through the
patterns of the speed estimation. With the assistance of
WiSpeed, people can obtain their exercise amount and
evaluate their personal fitness conditions without any
wearable sensors attached to their bodies.

2) Indoor navigation: Although outdoor real-time tracking
has been successfully solved by GPS, indoor tracking
still leaves an open problem up to now. Dead reckoning
based approach is among the existing popular techniques
for indoor navigation, which is based upon measure-
ments of speed and direction of movement to compute
the position starting from a reference point. However, the
accuracy is mainly limited by the inertial measurement
unit (IMU) based moving distance estimation. Since
WiSpeed can also measure the speed of a moving WiFi
device, the accuracy of distance estimation module in
dead reckoning-based systems can be improved dramat-
ically by incorporating WiSpeed.

3) Fall detection: Real-time speed monitoring for human
motions is important to the seniors who live alone in
their homes, as the system can detect falls which impose
major threats to their lives.

4) Home surveillance: WiSpeed can play a vital role in
the home security system since WiSpeed can distinguish
between an intruder and the owner’s pet through their
different patterns of moving speed and inform the owner
as well as the law enforcement immediately.

The rest of the paper is organized as follows. Section II
summarizes the related works about human activity recogni-
tion using WiFi signals. Section III introduces the statistical
theory of EM waves in cavities and its extensions for wireless
motion sensing. Section IV presents the basic principles of
WiSpeed and Section V shows the detailed designs of WiS-
peed. Experimental evaluation is shown in Section VI. Section
VII discusses the parameter selections and the computational

complexity of WiSpeed and Section VIII concludes the paper.

II. RELATED WORKS

Existing works on device-free motion sensing techniques
using commercial WiFi include gesture recognition [9], [10],
[11], [12], [13], human activity recognition [14], [15], [16],
motion tracing [17], [18], passive localization [7], [19], vital
signal estimation [20], indoor event detection [21] and so
on. These approaches are built upon the phenomenon that
human motions inevitably distort the WiFi signal and can be
recorded by WiFi receivers for further analysis. In terms of
the principles, these works can be divided into two categories:
learning based and ray-tracing based. Details of the two
categories are elaborated below.

Learning-based: These schemes consist of two phases,
namely, an offline phase, and an online phase. During the
offline phase, features associated with different human ac-
tivities are extracted from the WiFi signals and stored in a
database; in the online phase, the same set of features are
extracted from the instantaneous WiFi signals and compared
with the stored features so as to classify the human activities.
The features can be obtained either from CSI or the Received
Signal Strength Indicator (RSSI), a readily available but low
granularity information encapsulating the received power of
WiFi signals. For example, E-eyes [14] utilizes histograms
of the amplitudes of CSI to recognize daily activities such
as washing dishes and brushing teeth. CARM [15] exploits
features from the spectral components of CSI dynamics to
differentiate human activities. WiGest [9] exploits the features
of RSSI variations for gesture recognition.

A major drawback of the learning-based approach lies
in that these works utilize the speed of motion to identify
different activities, but they only obtain features related to
speed instead of directly measuring the speed. One example is
the Doppler shift, as it is determined by not only the speed of
motion but also the reflection angle from the object as well.
These features are thus susceptible to the external factors, such
as the changes in the environment, the heterogeneity in human
subjects, the changes of device locations, etc., which might
violate their underlying assumption of the reproducibility of
the features in the offline and online phases.

Ray-tracing based: Based on the adopted techniques, they
can be classified into multipath-avoidance and multipath-
attenuation. The multipath-avoidance schemes track the mul-
tipath components only reflected by a human body and avoid
the other multipath components. Either a high temporal reso-
lution [22] or a “virtual” phased antenna array is used [18],
such that the multipath components relevant to motions can
be discerned in the time domain or in the spatial domain from
those irrelevant to motions. The drawback of these approaches
is the requirement of dedicated hardware, such as USRP,
WARP [23], etc., to achieve a fine-grained temporal and spatial
resolution, which is unavailable on WiFi devices 1.

1On commercial main-stream 802.11ac WiFi devices, the maximum band-
width is 160MHz, much smaller than the 1.69GHz bandwidth in WiTrack.
Meanwhile, commercial WiFi devices with multiple antennas cannot work as
a (virtual) phased antenna array out-of-box before carefully tuning the phase
differences among the RF front-ends.
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In the multipath-attenuation schemes, the impact of mul-
tipath components is attenuated by placing the WiFi devices
in the close vicinity of the monitored subjects, so that the
majority of the multipath components are affected by the
subject [7], [10], [17]. The drawback is the requirement of
a very strong LOS working condition, which limits their
deployment in practice.

WiSpeed differs from the state-of-the-arts in literature in the
following ways:
• WiSpeed embraces multipath propagations indoors and

can survive and thrive under severe non-line-of-sight
(NLOS) conditions, instead of getting rid of the multipath
effect [7], [10], [18], [22].

• WiSpeed exploits the physical features of EM waves asso-
ciated with the speed of motion and estimates the speed of
motion without detouring. As the physical features hold
for different indoor environments and human subjects,
WiSpeed can perform well disregarding the changes of
environment and subjects and it is free from any kind of
training or calibration.

• WiSpeed enjoys its advantage in a lower computational
complexity in comparison with other approaches since
costly operations such as principal component analysis
(PCA), discrete wavelet transform (DWT), and short-time
Fourier transform (STFT) [7], [11], [15] are not required.

• WiSpeed is a low-cost solution since it only deploys
a single pair of commercial WiFi devices, while [6],
[7], [12], [17], [22] need either specialized hardware or
multiple pairs of WiFi devices.

III. STATISTICAL THEORY OF EM WAVES FOR WIRELESS
MOTION SENSING

In this section, we first decompose the received electric field
at the Rx into different components and then, the statistical be-
havior of each component is analyzed under certain statistical
assumptions.

A. Decomposition of the Received Electric Field

To provide an insight into the impact of motions on the EM
waves, we consider a rich-scattering environment as illustrated
in Fig. 1a, which is typical for indoor spaces. The scatterers
are assumed to be diffusive and can reflect the impinging
EM waves towards all directions. A transmitter (Tx) and a
receiver (Rx) are deployed in the environment, both equipped
with omnidirectional antennas. The Tx emits a continuous
EM wave via its antennas, which is received by the Rx. In
an indoor environment or a reverberating chamber, the EM
waves are usually approximated as plane waves, which can
be fully characterized by their electric fields. Let ~ERx(t, f)
denote the electric field received by the receiver at time t,
where f is the frequency of the transmitted EM wave. In
order to analyze the behavior of the received electric field, we
decompose ~ERx(t, f) into a sum of electric fields contributed
by different scatterers based on the superposition principle of
electric fields

~ERx(t, f) =
∑

i∈Ωs(t)

~Ei(t, f) +
∑

j∈Ωd(t)

~Ej(t, f), (1)

Tx
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Scatterer i

ivi
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(a) Propagation of radio signals
in rich scattering environment.
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Scatterer i

( , )iE t f

ivi

(b) Understanding ~Ei(t, f), i ∈
Ωd(t) using channel reciprocity.

Fig. 1: Illustration of wave propagation with many scatterers.

where Ωs(t) and Ωd(t) denote the set of static scatterers
and dynamic (moving) scatterers, respectively, and ~Ei(t, f)
denotes the part of the received electric field scattered by the
i-th scatterer. The intuition behind the decomposition is that
each scatterer can be treated as a “virtual antenna” diffusing
the received EM waves in all directions and then these EM
waves add up together at the receive antenna after bouncing
off the walls, ceilings, windows, etc. of the building. When
the transmit antenna is static, it can be considered to be a
“special” static scatterer, i.e., Tx ∈ Ωs(t); when it is moving,
it can be classified in the set of dynamic scatterers, i.e.,
Tx ∈ Ωd(t). The power of ~ETx(t, f) dominates that of electric
fields scattered by scatterers.

Within a sufficiently short period, it is reasonable to assume
that both the sets Ωs(t), Ωd(t) and the electric fields ~Ei(t, f),
i ∈ Ωs(t) change slowly in time. Then, we have the following
approximation:

~ERx(t, f) ≈ ~Es(f) +
∑
j∈Ωd

~Ej(t, f), (2)

where ~Es(f) ≈
∑
i∈Ωs(t)

~Ei(t, f).

B. Statistical Behaviors of the Received Electric Field

As is known from the channel reciprocity, EM waves
traveling in both directions will undergo the same physi-
cal perturbations (i.e. reflection, refraction, diffraction, etc.).
Therefore, if the receiver were transmitting EM waves, all
the scatterers would receive the same electric fields as they
contribute to ~ERx(t, f), as shown in Fig. 1b. Therefore, in
order to understand the properties of ~ERx(t, f), we only need
to analyze its individual components ~Ei(t, f), which is equal
to the received electric field by the i-th scatterer as if the
Rx were transmitting. Then, ~Ei(t, f) can be interpreted as an
integral of plane waves over all direction angles, as shown in
Fig. 2. For each incoming plane wave with direction angle
Θ = (α, β), where α and β denote the elevation and azimuth
angles, respectively, let ~k denote its vector wavenumber and let
~F (Θ) stand for its angular spectrum which characterizes the
electric field of the wave. The vector wavenumber ~k is given
by −k(x̂ sin(α) cos(β) + ŷ sin(α) sin(β) + ẑ cos(α)) where
the corresponding free-space wavenumber is k = 2πf

c and c is
the speed of light. The angular spectrum ~F (Θ) can be written
as ~F (Θ) = Fα(Θ)α̂ + Fβ(Θ)β̂, where Fα(Θ), Fβ(Θ) are
complex numbers and α̂, β̂ are unit vectors that are orthogonal
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Fig. 2: Plane wave component ~F (Θ) of the electric field with
vector wavenumber ~k.

to each other and to ~k. If the speed of the i-th scatterer is vi,
then ~Ei(t, f) can be represented as

~Ei(t, f) =

∫ 2π

0

∫ π

0

~F (Θ) exp(−j~k·~vit) sin(α) dα dβ, (3)

where z-axis is aligned with the moving direction of scatterer
i, as illustrated in Fig. 2, and time dependence exp(−j2πft)
is suppressed since it does not affect any results that will
be derived later. The angular spectrum ~F (Θ) could be either
deterministic or random. The electric field in (3) satisfies
Maxwell’s equations because each plane-wave component
satisfies Maxwell’s equations [24].

Radio propagation in a building interior is in general very
difficult to be analyzed because that the EM waves can be
absorbed and scattered by walls, doors, windows, moving
objects, etc. However, buildings and rooms can be viewed as
reverberation cavities in that they exhibit internal multipath
propagations. Hence, we refer to a statistical modeling instead
of a deterministic one and apply the statistical theory of
EM fields developed for reverberation cavities to analyze the
statistical properties of ~Ei(t, f). We assume that ~Ei(t, f) is a
superposition of a large number of plane waves with uniformly
distributed arrival directions, polarizations, and phases, which
can well capture the properties of the wave functions of
reverberation cavities [24]. Therefore, we take ~F (Θ) to be a
random variable and the corresponding statistical assumptions
on ~F (Θ) are summarized as follows:

Assumption 1. For ∀Θ, Fα(Θ) and Fβ(Θ) are both
circularly-symmetric Gaussian random variables [25] with the
same variance, and they are statistically independent.

Assumption 2. For each dynamic scatterer, the angular
spectrum components arriving from different directions are
uncorrelated.

Assumption 3. For any two dynamic scatterers i1, i2 ∈ Ωd,
~Ei1(t1, f) and ~Ei2(t2, f) are uncorrelated, for ∀t1, t2.

Assumption 1 is due to the fact that the angular spectrum is
a result of many rays or bounces with random phases and thus
it can be assumed that each orthogonal component of ~F (Θ)
tends to be Gaussian under the Central Limit Theorem. As-

sumption 2 is because that the angular spectrum components
corresponding to different directions have taken very different
multiple scattering paths and they can thus be assumed to be
uncorrelated with each other. Assumption 3 results from the
fact that the channel responses of two locations separated by
at least half wavelength are statistically uncorrelated [26][27],
and the electric fields contributed by different scatterers can
thus be assumed to be uncorrelated.

Under these three assumptions, ~Ei(t, f), ∀i ∈ Ωd can
be approximated as a stationary process in time. Define the
temporal ACF of an electric field ~E(t, f) as

ρ~E(τ, f) =
〈 ~E(0, f), ~E(τ, f)〉√
〈| ~E(0, f)|2〉〈| ~E(τ, f)|2〉

, (4)

where τ is the time lag, 〈 〉 stands for the ensemble average
over all realizations, 〈 ~X, ~Y 〉 denotes the inner product of ~X
and ~Y , i.e., 〈 ~X, ~Y 〉 =∆ 〈 ~X · ~Y ∗〉 and ∗ is the operator of
complex conjugate and · is dot product, | ~E(t, f)|2 denotes
the square of the absolute value of the electric field. Since
~E(t, f) is assumed to be a stationary process, the denominator
of (4) degenerates to E2(f) which stands for the power of
the electric field, i.e., E2(f) = 〈| ~E(t, f)|2〉, ∀t, and the ACF
is merely a normalized counterpart of the auto-covariance
function.

For the i-th scatterer with moving velocity ~vi, 〈 ~Ei(0, f) ·
~E∗i (τ, f)〉 can be derived as [24]

〈 ~Ei(0, f) · ~E∗i (τ, f)〉

=

∫
4π

∫
4π

〈~F (Θ1) · ~F (Θ2)〉 exp(j~k2·~viτ) dΘ1 dΘ2

=
E2
i (f)

4π

∫
4π

exp(jkviτ cos(α2))dΘ2

= E2
i (f)

sin(kviτ)

kviτ
, (5)

where we define
∫

4π
=∆
∫ 2π

0

∫ π
0

and dΘ =∆ sin(α) dα dβ, and
E2
i (f) is the power of ~Ei(t, f). With Assumption 3, the auto-

covariance function of ~ERx(t, f) can be written as〈
( ~ERx(0, f)− ~Es(f)) · ( ~E∗Rx(τ, f)− ~E∗s (f))

〉
=

∑
i∈Ωd

E2
i (f)

sin(kviτ)

kviτ
, (6)

and the corresponding ACF can thus be derived as

ρ~ERx
(τ, f) =

1∑
j∈Ωd

E2
j (f)

∑
i∈Ωd

E2
i (f)

sin(kviτ)

kviτ
. (7)

From (7), the ACF of ~ERx is actually a combination of the
ACF of each moving scatterer weighted by their radiation
power, and the moving direction of each dynamic scatterer
does not play a role in the ACF. The importance of (7) lies in
the fact that the speed information of the dynamic scatterers
is actually embedded in the ACF of the received electric field.
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IV. THEORETICAL FOUNDATION OF WISPEED

In Section III, we have derived the ACF of the received
electric field at the Rx, which depends on the speed of the
dynamic scatterers. If all or most of the dynamic scatterers
move at the same speed v, then the right-hand side of (7)
would degenerate to ρ~ERx

(τ, f) = sin(kvτ)
kvτ , and it becomes

very simple to estimate the common speed from the ACF.
However, it is not easy to directly measure the electric field at
the Rx and analyze its ACF. Instead, the power of the electric
field can be viewed equivalent to the power of the channel
response that can be measured by commercial WiFi devices.
In this section, we will discuss the principle of WiSpeed
that utilizes the ACF of the CSI power response for speed
estimation.

Without loss of generality, we use the channel response of
OFDM-based WiFi systems as an example. Let X(t, f) and
Y (t, f) be the transmitted and received signals over a subcar-
rier with frequency f at time t. Then, the least-square estimator
of the CSI for the subcarrier with frequency f measured at
time t is H(t, f) = Y (t,f)

X(t,f) [28]. In practice, the obtained
estimation of the CSI suffers from the synchronization errors,
which mainly consists of channel frequency offset (CFO),
sampling frequency offset (SFO) and symbol timing offset
(STO) [26]. Although the WiFi receivers perform timing and
frequency synchronization, the residual of these errors cannot
be neglected. However, the impact of synchronization errors
on the amplitude of CSI is insignificant and thus WiSpeed
only exploits the amplitude information of the measured CSI.

We define the power response G(t, f) as the square of the
magnitude of CSI, which takes the form

G(t, f) , |H(t, f)|2 = ‖ ~ERx(t, f)‖2 + ε(t, f), (8)

where ‖ ~E‖2 denotes the total power of ~E, and ε(t, f) is
assumed to be an additive noise due to the imperfect mea-
surement of CSI.

The noise ε(t, f) can be assumed to follow a normal
distribution. To prove this, we collect a set of one-hour CSI
data in a static indoor environment with the channel sampling
rate Fs = 30 Hz. The Q-Q plot of the normalized G(t, f) and
standard normal distribution for a given subcarrier is shown in
Fig. 3a, which shows that the distribution of the noise is very
close to a normal distribution. To verify the whiteness of the
noise, we also study the ACF of G(t, f) that can be defined
as [29] ρG(τ, f) = γG(τ,f)

γG(0,f) , where γG(τ, f) denotes the auto-
covariance function, i.e., γG(τ, f) =∆ cov(G(t, f), G(t−τ, f)).
In practice, sample auto-covariance function γ̂G(τ, f) is used
instead. If ε(t, f) is white noise, the sample ACF ρ̂G(τ, f), for
∀τ 6= 0, can be approximated by a normal random variable
with zero mean and standard deviation σρ̂G(τ,f) = 1√

T
. Fig. 3b

shows the sample ACF of G(t, f) when 2000 samples on the
first subcarrier are used. As we can see from the figure, all the
taps of the sample ACF are within the interval of ±2σρ̂G(τ,f),
and thus, it can be assumed that ε(t, f) is an additive white
Gaussian noise, i.e., ε(t, f) ∼ N (0, σ2(f)).

In the previous analysis in Section III, we assume that
the Tx transmits continuous EM waves, but in practice the
transmission time is limited. For example, in IEEE 802.11n
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Fig. 3: The Q-Q plot and sample ACF of a typical CSI power
response.

WiFi systems operated in 5 GHz frequency band with 40 MHz
bandwidth channels, a standard WiFi symbol is 4µs, com-
posed of a 3.2µs useful symbol duration and a 0.8µs guard
interval. According to [30], for most office buildings, the
delay spread is within the range of 40 to 70 ns, which is
much smaller than the duration of a standard WiFi symbol.
Therefore, we can assume continuous waves are transmitted
in WiFi systems.

Based on the above assumptions and (2), (8) can be approx-
imated as

G(t, f) ≈ ‖ ~Es(f) +
∑
i∈Ωd

~Ei(t, f)‖2 + ε(t, f)

=

∥∥∥∥∥∥
∑

u∈{x,y,z}

(
Esu(f)û+

∑
i∈Ωd

Eiu(t, f)û

)∥∥∥∥∥∥
2

+ ε(t, f)

=
∑

u∈{x,y,z}

∣∣∣∣∣Esu(f) +
∑
i∈Ωd

Eiu(t, f)

∣∣∣∣∣
2

+ ε(t, f)

=
∑

u∈{x,y,z}

(
|Esu(f)|2 + 2Re

{
E∗su(f)

∑
i∈Ωd

Eiu(t, f)

}

+

∣∣∣∣∣∑
i∈Ωd

Eiu(t, f)

∣∣∣∣∣
2)

+ ε(t, f), (9)

where x̂, ŷ and ẑ are unit vectors orthogonal to each other as
shown in Fig. 2, Re{·} denotes the operation of taking the real
part of a complex number, and Eiu denotes the component of
~Ei in the u-axis direction, for ∀u ∈ {x, y, z}. Then, the auto-
covariance function of G(t, f) can be derived as

γG(τ, f) = cov (G(t, f), G(t− τ, f))

≈
∑

u∈{x,y,z}

(
2|Esu(f)|2

∑
i∈Ωd

cov(Eiu(t, f), Eiu(t− τ, f))

+
∑

i1,i2∈Ωd
i1≥i2

cov(Ei1u(t, f), Ei1u(t− τ, f)) ·

cov(Ei2u(t, f), Ei2u(t− τ, f))

)
+ δ(τ)σ2(f), (10)

where Assumptions 1-3 and (3) are applied to simplify the ex-
pression and the detailed derivations can be found in Appendix
VIII-A.
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Fig. 4: Theoretical spatial ACF for different orthogonal com-
ponents of EM waves.

According to the relation between the auto-covariance and
autocorrelation, γG(τ, f) can be rewritten in the forms of
ACFs of each scatterer as

γG(τ, f) ≈
∑

u∈{x,y,z}

( ∑
i∈Ωd

2|Esu(f)|2E2
i (f)

3
ρEiu(τ, f)

+
∑

i1,i2∈Ωd
i1≥i2

E2
i1

(f)E2
i2

(f)

9
ρEi1u

(τ, f)ρEi2u
(τ, f)

)

+δ(τ)σ2(f), (11)

where the right-hand side is obtained by using the relation
E2
iu(f) =

E2
i (f)
3 , ∀u ∈ {x, y, z}, ∀i ∈ Ωd [24]. The

corresponding ACF ρG(τ, f) of G(t, f) is thus obtained by
ρG(τ, f) = γG(τ,f)

γG(0,f) , where γG(τ, 0) can be obtained by plug-
ging ρEiu(0, f) = 1 into (11). When the moving directions of
all the dynamic scatterers are approximately the same, then we
can choose z-axis aligned with the common moving direction.
Then, the closed forms of ρEiu

(τ, f), ∀u ∈ {x, y, z}, are
derived under Assumptions 1-2 [24], i.e., for ∀i ∈ Ωd,

ρEix
(τ, f) = ρEiy

(τ, f)

=
3

2

[
sin(kviτ)

kviτ
− 1

(kviτ)2

(
sin(kviτ)

kviτ
−cos(kviτ)

)]
,(12)

ρEiz (τ, f) =
3

(kviτ)2

[
sin(kviτ)

kviτ
− cos(kviτ)

]
. (13)

The theoretical spatial ACFs are shown in Fig. 4a where d =∆

viτ . As we can see from Fig. 4a, the magnitudes of all the
ACFs decay with oscillations as the distance d increases.

For a WiFi system with a bandwidth of 40 MHz and a carrier
frequency of 5.805 GHz, the difference in the wavenumber k
of each subcarrier can be neglected, e.g., kmax = 122.00 and
kmin = 121.16. Then, we can assume ρ(τ, f) ≈ ρ(τ), ∀f .
Thus, we can improve the sample ACF by averaging across
all subcarriers, i.e., ρ̂G(τ) , 1

F

∑
f∈F ρ̂G(τ, f), where F

denotes the set of all the available subcarriers and F is the
total number of subcarriers. When all the dynamic scatterers
have the same speed, i.e., vi = v for ∀i ∈ Ωd, which is the
case for monitoring the motion for a single human subject, by
defining the substitutions E2

su =∆ 2
F

∑
f∈F |Esu(f)|2, E2

d =∆

1
3F

∑
i∈Ωd

∑
f∈F E

2
i (f), ρ̂G(τ) can be further approximated

as (for τ 6= 0)

ρ̂G(τ) ≈ C
∑

u∈{x,y,z}

(
E2
d ρ̂

2
Eiu

(τ) + E2
suρ̂Eiu

(τ)

)
, (14)

where C is a scaling factor and the variance of each subcarrier
is assumed to be close to each other.

From (14), we observe that ρG(τ) is a weighted combi-
nation of ρEiu

(τ) and ρ2
Eiu

(τ), ∀u ∈ {x, y, z}. The left-
hand side of (14) can be estimated from CSI and the speed
is embedded in each term on the right-hand side. If we can
separate one term from the others on the right-hand side of
(14), then the speed can be estimated.

Taking the differential of all the theoretical spatial ACFs as
shown in Fig. 4b where we use the notation ∆ρ(τ) to denote
dρ(τ)

dτ , we find that although the ACFs of different components
of the received EM waves are superimposed, the first local
peak of ∆ρ2

Eiu
(τ), ∀u ∈ {x, y}, happens to be the first local

peak of ∆ρG(τ) as well. Therefore, the component ρ2
Eiu

(τ)
can be recognized from ρG(τ), and the speed information can
thus be obtained by localizing the first local peak of ∆ρ̂G(τ),
which is the most important feature that WiSpeed extracts from
the noisy CSI measurements.

To verify (14), we build a prototype of WiSpeed with com-
mercial WiFi devices. The configurations of the prototype are
summarized as follows: both WiFi devices operate on WLAN
channel 161 with a center frequency of fc = 5.805 GHz,
and the bandwidth is 40 MHz; the Tx is equipped with a
commercial WiFi chip and two omnidirectional antennas,
while the Rx is equipped with three omnidirectional antennas
and uses Intel Ultimate N WiFi Link 5300 with modified
firmware and driver [8]. The Tx sends sounding frames with
a channel sampling rate Fs of 1500 Hz, and CSI is obtained
at the Rx. The transmission power is configured as 20 dBm.

All experiments in this paper are conducted in a typical
indoor office environment as shown in Fig. 5. In each experi-
ment, the LOS path between the Tx and the Rx is blocked by
at least one wall, resulting in a severe NLOS condition. More
specifically, we investigate two cases:

1) The Tx is in motion and the Rx remains static: The
Tx is attached to a cart and the Rx is placed at Location
Rx #1 as shown in Fig. 5. The cart is pushed forward
at an almost constant speed along Route #1 marked in
Fig. 5 from t = 3.7 s to t = 14.3 s.

2) Both the Tx and the Rx remain static and a person
passes by: the Tx and Rx are placed at Location Tx
#1 and Rx #1 respectively. A person walks along Route
#1 at a speed similar to Case (1) from t = 4.9 s to
t = 16.2 s.

Since the theoretical approximations are only valid under
the short duration assumption, we set the maximum time lag
τ as 0.2 s. In both cases, we compute the sample ACF ρ̂G(τ)
every 0.05 s.

Fig. 6 demonstrates the sample ACFs for the two cases. In
particular, Fig. 6a visualizes the sample ACF corresponding
to a snapshot of Fig. 6e for different subcarriers given a fixed
time t with the time lag τ ∈ [0, 0.2s], and Fig. 6c shows the
average ACF ρ̂G(τ), which is much less noisy compared with
individual ρ̂G(τ, f). In this case, the Tx can be regarded as a
moving scatterer with a dominant radiation power compared
with the other scatterers, giving rise to the dominance of
E2
dρ

2
Eiu

(τ), u ∈ {x, y, z} over the other components in (14).
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Fig. 5: Experimental settings in a typical office environment
with different Tx/Rx locations and walking routes.

Additionally, ρ2
Eiz

(τ) decays much faster than ρ2
Eix

(τ) and
ρ2
Eiy

(τ), and ρ2
Eix

(τ) = ρ2
Eiy

(τ). Thus, a similar pattern
between ρ̂G(τ) and ρ2

Eix
(τ) (ρ2

Eiy
(τ)) can be observed with

a common and dominant component sin2(kvτ)
(kvτ)2 , where v is

the speed of the cart and the person. The experimental result
illustrated in Fig. 6c matches well with the theoretical analysis
in the sense that only the component ρ2

Eix
(τ) dominates

the obtained ACF estimation and the impacts of the other
components can be neglected.

Similarly, for Case (2), Fig. 6b shows the sample ACF
ρ̂G(τ, f) for different subcarriers and Fig. 6d shows the
average sample ACF ρ̂G(τ), which is a snapshot of Fig. 6f
given a fixed time t with the time lag τ = [0, 0.2s]. Clearly, the
pattern of the component ρ2

Eiu
(τ), u ∈ {x, y}, in the sample

ACF is much less pronounced than Case (1) shown in Fig. 6c
and Fig. 6e. This can be justified by the fact that the radiation
power E2

d is much smaller than that in Case (1), as the set of
dynamic scatterers only consists of different parts of a human
body in mobility. Consequently, the shape of ρ̂G(τ) resembles
more closely to ρEiu

(τ), ∀u ∈ {x, y, z} with a dominant com-
ponent sin(kvτ)

kvτ . Note that the component sin(kvτ)
kvτ oscillates

two times slower than the component sin2(kvτ)
(kvτ)2 does. From

Fig. 6d, we can observe that the obtained ACF is a result of
a weighted sum of these two components. We also observe
that the slow-varying trend of the ACF follows the shape of
the component sin(kvτ)

kvτ and the component sin2(kvτ)
(kvτ)2 is only

embedded in the trend, the weight of sin(kvτ)
kvτ should be larger

than that of sin2(kvτ)
(kvτ)2 . Note that the embedded component

sin2(kvτ)
(kvτ)2 has a similar pattern compared with Case (1) since

the moving speeds in the two experiments are similar to each
other.

V. KEY COMPONENTS OF WISPEED

Based on the theoretical results derived in Section IV, we
propose WiSpeed, which integrates three modules: moving
speed estimator, acceleration estimator, and gait cycle esti-
mator. The moving speed estimator is the core module of
WiSpeed, while the other two extract useful features from the
moving speed estimator to detect falling down and to estimate
the gait cycle of a walking person.
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Fig. 6: ACFs for the two scenarios.

A. Moving Speed Estimator

WiSpeed estimates the moving speed of the subject by
calculating the sample ACF ∆ρ̂G(τ) from CSI measurements,
localizing the first local peak of ∆ρ̂G(τ), and mapping the
peak location to the speed estimation. Since in general, the
sample ACF ∆ρ̂G(τ) is noisy as can be seen in Fig. 6e and
Fig 6f, we develop a novel robust local peak identification
algorithm based on the idea of local regression [31] to reliably
detect the location of the first local peak of ∆ρ̂G(τ).

For notational convenience, write the discrete signal for
local peak detection as y[n], and our goal is to identify
the local peaks in y[n]. First of all, we apply a moving
window with length 2L+ 1 to y[n], where L is chosen to be
comparable with the width of the desired local peaks. Then,
for each window with its center located at n, we verify if
there exists any potential local peak within the window by
performing a linear regression and a quadratic regression to
the data inside the window, separately. Let SSE denote the
sum of squared errors for the quadratic regression and SSEr
denote that for the linear regression. If there is no local peak
within the given window, the ratio α[n] =∆ (SSEr−SSE)/(3−2)

SSE/(2L+1−3)
can be interpreted as a measure of the likelihood of the
presence of a peak within the window, and has a central F-
distribution with 1 and 2(L − 1) degrees of freedom, under
certain assumptions [32]. We choose a potential window with
the center point n only when α[n] is larger than a preset
threshold η, which is determined by the desired probability
of finding a false peak, and α[n] should also be larger than its
neighborhoods α[n−L],...,α[n+L]. When L is small enough
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Fig. 7: An illustration of the peak identification algorithm.

and there exists only one local peak within the window, the
location of the local peak can be directly obtained from the
fitted quadratic curve.

We use a numerical example in the following to verify the
effectiveness of the proposed local peak identification algo-
rithm. Let y(t) = cos(2πf1t+0.2π)+cos(2πf2t+0.3π)+n(t),
where we set f1 = 1 Hz, f2 = 2.5 Hz, and n(t) ∼ N (0, σ2) is
additive white Gaussian noise with zero mean and variance σ2.
The signal y(t) is sampled at a rate of 100 Hz from time t = 0 s
to t = 1 s. When the noise is absent, the true locations of the
two local peaks are t1 ≈ 0.331 s and t2 ≈ 0.760 s and the
estimates of our proposed local peak identification algorithm
are t̂1 ≈ 0.327 s and t̂2 ≈ 0.763 s, as shown in Fig. 7a. When
the noise is present and σ is set to 0.2, the estimates are
t̂1 ≈ 0.336 s and t̂2 ≈ 0.762 s, as shown in Fig. 7b. As we can
see from the results, the estimated locations of the local peaks
are very close to those of the actual peaks even when the signal
is corrupted with the noise, which shows the effectiveness of
the proposed local peak identification algorithm.

Then, the speed of the moving object can be estimated as
v̂ = d1

τ̂ , where d1 is the distance between the first local peak
of ∆ρ2

Eix
(d) and the origin, and τ̂ is the location of the first

local peak of ∆ρ̂G(τ). The distance d1 can be obtained by
solving the equation

∂2

∂d2
ρ2
Eix

(d, f) = 0, (15)

where ρEix(d, f) denotes the theoretical spatial ACF as shown
in Fig. 4a. As (15) does not have a closed-form solution, we
evaluate the second smallest root of (15) numerically which
leads to about 0.54λ. A median filter is then applied to the
speed estimates to remove the outliers. The proposed speed
estimator is summarized in Algorithm 1.

B. Acceleration Estimator

Acceleration can be calculated from v̂ obtained in Sec-
tion V-A. One intuitive method of acceleration estimation is to
take the difference of two adjacent speed estimates and then
divide the difference of the speeds by the difference of their
measurement time. However, this scheme is not robust as it
is likely to magnify the estimation noise. Instead, we leverage
the fact that the acceleration values can be approximated as
a piecewise linear function as long as there are enough speed
estimates within a short duration. `1 trend filter produces trend
estimates that are smooth in the sense of being piecewise

Algorithm 1 The proposed speed estimator

Input: T consecutive CSI measurements before time t:
H(s, f), s = t− T−1

Fs
, ..., t− 1

Fs
, t, and f ∈ F ;

Output: Speed estimation at t: v̂(t).
1: Calculate the CSI power response: G(s, f)← |H(s, f)|2;
2: Calculate the ACF of each subcarrier f : ρ̂G(τ, f) ←

1
T

∑t
s=t−T−1

Fs
+τ

(
G(s− τ, f)− Ḡ(f)

) (
G(s, f)− Ḡ(f)

)
,

where Ḡ(f) is the sample mean;
3: Aggregate ACF across all the subcarriers: ρ̂G(τ) ←

1
F

∑
f∈F ρ̂G(τ, f);

4: Calculate the differential ACF: ∆ρ̂G(τ) ← ρ̂G(τ) −
ρ̂G(τ − 1

Fs
);

5: Apply the proposed peak identification algorithm to esti-
mate the location of the first local peak of ∆ρ̂G(τ): τ̂ ;

6: Speed estimation at time t: v̂(t)← 0.54λ
τ̂ .

linear [33] and is well suited to our purpose. Thus, we adopt an
`1 trend filter to extract the piecewise linear trend embedded
in the speed estimation and then, estimate the accelerations by
taking differential of the smoothed speed estimation.

Mathematically, let v̂[n] denote v̂(n∆T ), where ∆T is
the interval between two estimates, and let ṽ[n] denote the
smoothed one. Then, ṽ[n] is obtained by solving the following
unconstrained optimization problem:

min
ṽ[n],∀n

N∑
n=1

(ṽ[n]−v̂[n])
2
+λ

N−1∑
n=2

∣∣∣ṽ[n− 1]−2ṽ[n]+ṽ[n+ 1]
∣∣∣,

(16)
where λ ≥ 0 is the regularization parameter used to control
the trade-off between smoothness of ṽ[n] and the size of the
residual |ṽ[n] − v̂[n]|, and N denotes the size of the speed
estimates that need to be smoothed. Then, we obtain the
acceleration estimation as â[n] = (ṽ[n]−ṽ[n−1])

∆T . As shown in
[33], the complexity of the `1 filter grows linearly with the
length of the data N and can be calculated in real-time on
most platforms.

C. Gait Cycle Estimator

When the estimated speed is within a certain range, e.g.,
from 1m/s to 2m/s, and the acceleration estimates are
small, then WiSpeed starts to estimate the corresponding gait
cycle. In fact, the process for walking a single step can be
decomposed into three stages: lifting one leg off the ground,
using the lifted leg to contact with the ground and pushing
the body forward, and keeping still for a short period of time
before the next step. The same procedure is repeated until the
destination is reached.

In terms of speed, one cycle of walking consists of an
acceleration stage followed by a deceleration stage. WiSpeed
leverages the periodic pattern of speed changes for gait cycle
estimation. More specifically, WiSpeed extracts the local peaks
in the speed estimates corresponding to the moments with
the largest speeds. To achieve peak localization, we use
the persistence-based scheme presented in [34] to formulate
multiple pairs of local maximum and local minimum, and
the locations of the local maximum are considered as the
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TABLE I: Exp. settings for device-free human walking mon-
itoring

Setting
Config. Tx loc. Rx loc. Route index

Setting #1 Tx #1 Rx #1 Route #1/#2
Setting #2 Tx #1 Rx #2 Route #1/#2
Setting #3 Tx #2 Rx #1 Route #1/#2
Setting #4 Tx #3 Rx #2 Route #3/#4
Setting #5 Tx #4 Rx #2 Route #3/#4
Setting #6 Tx #3 Rx #3 Route #3/#4

TABLE II: Exp. settings for device-based speed monitoring

Setting
Config. Tx loc. Rx loc. Route index

Setting #7 moving Rx #1 Route #1/#2
Setting #8 moving Rx #4 Route #1/#2
Setting #9 moving Rx #1 Route #3/#4
Setting #10 moving Rx #4 Route #3/#4

peak locations. The time interval between every two adjacent
peaks is computed as a gait cycle. Meanwhile, the moving
distance between every two adjacent peaks is calculated as
the estimation of the stride length.

VI. EXPERIMENTAL RESULTS

In this section, we first introduce the indoor environment
and system setups of the experiments. Then, the performance
of WiSpeed is evaluated in two applications: human walking
monitoring and human fall detection.

A. Environment

We conduct extensive experiments in a typical office envi-
ronment, with floorplan shown in Fig. 5. The indoor space is
occupied by desks, computers, shelves, chairs, and household
appliances. The same WiFi devices as introduced in Section IV
are used during the experiments.

B. Experimental Settings

Two sets of experiments are performed. In the first set of
experiments, we study the performance of WiSpeed in esti-
mating the human walking speed. For device-free scenarios,
it shows that the number of steps and stride length can also
be estimated besides the walking speed. Estimation accuracy
is used as the metric which compares the estimated walking
distances with the ground-truth distances, since measuring
walking distance is much easier and more accurate than
measuring the speed directly. Different routes and locations
of the devices are tested and the details of experiment setup
are summarized in Tab. I and Tab. II. In the second set of
experiments, we investigate the performance of WiSpeed as a
human activity monitoring scheme. Two participants are asked
to perform different activities, including standing up, sitting
down, picking up things from the ground, walking, and falling
down.

C. Human Walking Monitoring

Fig. 8 visualizes one of the experimental results under
Setting #1 of Route #1, i.e., both the Tx and Rx are static and
one experimenter walks along the specified route. Fig. 8a–
c show three snapshots of estimated ACFs at different time
instances marked in Fig. 8d. From Fig. 8, we can conclude
that although the ACFs are very different, the locations of the
first local peak of ∆ρ̂G(τ) are highly consistent as long as the
ACFs are calculated under similar walking speeds.

Fig. 8d shows the results of walking speed estimation for the
experiment, and we can see a very clear pattern of walking due
to the acceleration and deceleration. The corresponding stride
length estimation is shown in Fig. 8e. The estimated walking
distance is 8.46 m and it is within 5.75% of the ground-truth
distance of 8 m. On the other hand, the average stride length
is 0.7 m and very close to the average walking stride length
of the participants.

Fig. 9 shows two typical speed estimation results both under
Setting #7 of Route #1 where the Tx is attached to a cart and
one experimenter pushes the cart along the specified route. The
cart moves at different speeds for these two realizations, and
Fig. 9a and Fig. 9b show the corresponding speed estimates,
respectively. As we can see from the estimated speed patterns,
there are no periodic patterns like the device-free walking
speed estimates as in Fig. 8d. This is because when the Tx is
moving, the energy of the EM waves reflected by the human
body is dominated by that radiated by the transmit antennas
and WiSpeed can only estimate the speed of moving antennas.
The estimated moving distance for the case that Tx moves at a
higher speed is 8.26 m and the other one is 8.16 m, where the
ground-truth distance is 8 m. Note that the speed estimators,
proposed in [35] and [36], can also obtain the similar results
under the same condition, however, they cannot work for
device-free scenarios.

Fig. 10 summarizes the accuracy of the 200 experiments of
human walking speed estimation. More specifically, Fig. 10a
shows the error distribution for Setting #1 – #6, and Fig. 10b
demonstrates the corresponding error distribution for Route
#1 – #4; Fig. 10c shows the error distribution for Setting
#7 – #10, and Fig. 10d demonstrates the corresponding error
distribution for Route #1 – #4. The bottom and top error
bars stand for the 5% percentiles and 95% percentiles of
the estimates, respectively, and the middle of point is the
sample mean of the estimates. The ground-truths for Routes
#1–#4 are shown in Fig. 5. From the results, we find that (i)
WiSpeed performs consistently for different Tx/Rx locations,
routes, subjects, and walking speeds, indicating the robustness
of WiSpeed under various scenarios, and (ii) WiSpeed tends to
overestimate the moving distances under device-free settings.
This is because we use the route distances as baselines and
ignore the displacement of the subjects in the direction of
gravity. Since WiSpeed measures the absolute moving distance
of the subject in the coverage area, the motion in the gravity
direction would introduce a bias into the distance estimation.

In summary, WiSpeed achieves a MAPE of 4.85% for
device-free human walking speed estimation and 4.62% for
device-based speed estimation, which outperforms the existing
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approaches, even with only a single pair of WiFi devices and
in severe NLOS conditions. Note that WiDar [7] can achieve
a median speed error of 13%, however, they require multiple
pairs of WiFi devices and strong line-of-sight operating con-
dition, i.e., the object being tracked should be within the fields
of vision of both the transmitters and receivers.

D. Human Fall Detection

In this subsection, we show that WiSpeed can differentiate
falling down from other normal daily activities. We collect a
total of five sets of data: (i) falling to the ground, (ii) standing
up from a chair, (iii) sitting down on a chair, and (iv) bowing
and picking up items from the ground, (v) walking inside the
room. Each experiment lasts for 8 s. We collect 20 datasets of
the falling down activity from two subjects, and 10 datasets for
each of the other four activities from the same two subjects.
The experiments are conducted in Room #5, and the WiFi Tx
and Rx are placed at Location Tx #1 and Rx #2 as shown
in Fig. 5. Fig. 11 shows a snapshot of speed and acceleration
estimation results for different activities and subjects.

Realizing that the duration of a real-world falling down can
be as short as 0.5 s and the human body would experience a
sudden acceleration and then a deceleration [37], we propose
two metrics for falling down detection: (i) the maximum
change in acceleration within 0.5 s, denoted as ∆a, and (ii)
the maximum speed during the period of the maximum change
of acceleration, written as vmax. Fig. 12 shows the distribu-
tion of (∆a, vmax) of all activities from the two subjects.
Obviously, by setting two thresholds: ∆a ≥ 1.6m/s2 and
vmax ≥ 1.2m/s, WiSpeed could differentiate falls from the
other four activities except one outlier, leading to a detection
rate of 95% and zero false alarm, while [14] requires machine
learning techniques. This is because WiSpeed extracts the most
important physical features for activity classification, namely,
the speed and the change of acceleration, while [14] infers
these two physical values indirectly.

VII. DISCUSSION

In this section, we discuss the system parameter selections
for different applications and their impact on the computational
complexity of WiSpeed, and the behavior of WiSpeed when
multiple objects are present.

A. Tracking a Fast Moving Object
In order to track fast speed-varying object, we adopt the

following equation with a reduced number of samples to
calculate the sample auto-covariance function:

γ̂G(τ, f) =

1

M

T∑
t=T−M+1

(
G(t−τ,f)−Ḡ(f)

)(
G(t,f)−Ḡ(f)

)
, (17)



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2826227, IEEE Internet of
Things Journal

11

1 2 3 4 5 6
Setting Index

6

8

10

12

D
is

ta
n
ce

 (
m

)
Device-free Distance Estimation (Settings)

(a) Estimation results for Set-
ting #1 – #6.

1 2 3 4

Route Index

6

8

10

12

D
is

ta
n

c
e
 (

m
)

Device-free Distance Estimation (Routes)

(b) Estimation results for Route
#1 – #4.

7 8 9 10

Setting Index

6

8

10

12

D
is

ta
n

ce
 (

m
)

Device-based Distance Estimation (Settings)

(c) Estimation results for Set-
ting #7 – #10.

1 2 3 4

Route Index

6

8

10

12

D
is

ta
n
c
e
 (

m
)

Device-based Distance Estimation (Routes)

(d) Estimation results for Route
#1 – #4.

Fig. 10: Error distribution of distance distance estimates under different conditions.

Falling down

Sub. 1

Sub. 2

Standing up Sitting down Picking up

0 2 4 6 8

0

1

2

3

0 2 4 6 8

-5

0

5

0 2 4 6 8

0

1

2

3

0 2 4 6 8

-5

0

5

0 2 4 6 8

0

1

2

3

0 2 4 6 8

-5

0

5

0 2 4 6 8

0

1

2

3

0 2 4 6 8

-5

0

5

0 2 4 6 8

0

1

2

3

0 2 4 6 8

-5

0

5

0 2 4 6 8

0

1

2

3

0 2 4 6 8

-5

0

5

0 2 4 6 8

0

1

2

3

0 2 4 6 8

-5

0

5

0 2 4 6 8

0

1

2

3

0 2 4 6 8

-5

0

5

Fig. 11: Speed and Acceleration for different activities and subjects.

vmax (m/s)
0.5 1 1.5 2

∆
a
(m

/s
2
)

0

2

4

6

8
Falling down

Standing up

Sitting down

Picking up

Walking

∆a ≥ 1.6 m/s2

vmax ≥ 1.2 m/s

Fig. 12: Distribution of the two metrics for all the activities.

where T is the length of the window, M is the number of
samples for averaging, and Ḡ(f) is the sample average. (17)
shows that to estimate a moving subject with speed v, WiSpeed
requires a time window with a duration T0 = 0.54λ

v + M
Fs

seconds. Essentially, WiSpeed captures the average speed of
motion in a period of time rather than the instantaneous
moving speed. For instance, with v = 1.3m/s, Fs = 1500 Hz,
fc = 5.805 GHz, and M = 100, T0 is around 0.12 s. In case
that the speed changes significantly within a duration of T0, the

performance of WiSpeed would degrade. To track the speed of
a fast-varying moving subject, a smaller T0 is desirable, which
can be achieved by increasing the channel sampling rate Fs
or increasing the carrier frequency to reduce the wavelength
λ.

B. Computational Complexity

The main computational complexity of WiSpeed comes
from the estimation of the overall ACF ρ̂G(τ), giving rise
to a total of FMT0Fs multiplications where F is the number
of available subcarriers. For motions with slow-varying speeds
such as walking and standing up, a lower channel sampling
rate suffices which could reduce the complexity. For example,
in our experiments of human walking speed estimation and
human fall detection, Fs = 1500 Hz, fc = 5.805 GHz,
F = 180, and M = 100, the total number of multiplications
for WiSpeed to produce one output is around 3 million. This
leads to a computational time of 80.4 ms on a desktop with
Intel Core i7-7500U processor and 16GB memory, which is
short enough for real-time applications.

C. Impact of Multiple Moving Objects

WiSpeed is designed to estimate the speed of a single
moving object in the environment. If there exist multiple



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2826227, IEEE Internet of
Things Journal

12

0 5 10 15 20 25 30 35

Time (s)

0

0.5

1

1.5

2

2.5

S
p
e
e
d
 (

m
/s

)

Raw speed estimation

Filtered speed estimationSubject 2

Subject 1 Subject 1

Subject 2

Turn around together

Fig. 13: Two subjects walking in the environment.

moving objects within the coverage of WiSpeed, WiSpeed
would capture the highest speed among the objects. This is
because WiSpeed uses the first local peak of the obtained ACF
differential to estimate the speed and the component of ACF
contributed by the object with the highest moving speed has
the closest peak to the origin.

An experiment is conducted to illustrate the conjecture.
Under Setting #4 as described in Section VI-B, two subjects
first walk along Route #3, and then, they turn around at the
same time and repeat the process along Route #4. For each
Route, Subject #1 walks with a lower speed and starts to
walk earlier than Subject #2, and Subject #2 walks with a
higher speed and stops earlier than Subject #1. Fig. 13 shows
that WiSpeed first captures the walking speed of Subject #1
while Subject #2 keeps static, and then, it captures the speed
of Subject #2 when the speed of Subject #2 exceeds that of
Subject #1.

One potential solution for detecting the speeds of multiple
moving objects is to deploy multiple transmission pairs of
WiSpeed. The coverage of each pair can be tuned by varying
the distance between the transmitter and receiver. The envi-
ronment can thus be divided into multiple small regions and
it is reasonable to assume that there is only a single person
within each small region.

VIII. CONCLUSIONS

In this work, we propose WiSpeed, a universal indoor speed
estimation system for human motions leveraging commercial
WiFi, which can estimate the speed of a moving object under
either device-free or device-based condition. WiSpeed is built
upon the statistical theory of EM waves which quantifies the
impact of human motions on EM waves for indoor environ-
ments. We conduct extensive experiments in a typical indoor
environment which demonstrates that WiSpeed can achieve
a MAPE of 4.85% for device-free human walking speed
monitoring and a MAPE of 4.62% for device-based speed
estimation. Meanwhile, it achieves an average detection rate of
95% with no false alarms for human fall detection. Due to its
large coverage, robustness, low cost, and low computational
complexity, WiSpeed is a very promising candidate for indoor
passive human activity monitoring systems.

APPENDIX

A. Derivation of (10)

First, we can rewrite G(t, f) as

G(t, f) =
∑

u∈{x,y,z}

Gu(t, f) + ε(t, f), (18)

where Gu(t, f) =∆ |Esu(f)|2 +

2Re
{
E∗su(f)

∑
i∈Ωd

Eiu(t, f)
}

+
∣∣∑

i∈Ωd
Eiu(t, f)

∣∣2.
Then, the covariance of G(t, f) can be written as

γG(τ, f) = cov
(
G(t, f), G(t− τ, f)

)
=
∑

u∈{x,y,z}

cov
(
Gu(t,f),Gu(t− τ, f)

)
+cov

(
ε(t, f), ε(t−τ, f)

)
=

∑
u∈{x,y,z}

cov
(
Gu(t, f), Gu(t−τ, f)

)
+δ(τ)σ2(f), (19)

which is due to Assumptions 2-3 and the assumptions of the
noise term. Thus, in the following, we only need to focus
on the term γGu

(τ, f) =∆ cov
(
Gu(t, f), Gu(t − τ, f)

)
, that

is, for ∀u ∈ {x, y, z}, we have the equation (20). We begin
with the term

〈
A1,A3

〉
. For notational convenience, define

Eiu(t, f) =∆ ai(t) + jbi(t) and Esu(f) =∆ u+ jv, for ∀i ∈ Ωd,
∀u ∈ {x, y, z}, and ai, bi, u, v are all real. Then, we have

〈
A1,A3

〉
= 4

〈
u
∑
i∈Ωd

ai(t)+v
∑
i∈Ωd

bi(t),u
∑
i∈Ωd

ai(t−τ)+v
∑
i∈Ωd

bi(t− τ)
〉

= 4u2
∑
i∈Ωd

〈
ai(t),ai(t− τ)

〉
+4v2

∑
i∈Ωd

〈
bi(t), bi(t− τ)

〉
= 4(u2 + v2)

∑
i∈Ωd

〈
ai(t), ai(t− τ)

〉
, (21)

where we apply the assumption that the real and imaginary
parts of the electric field have the same statistical behaviors.
At the same time, we have

cov(Eiu(t, f), Eiu(t− τ, f))

=
〈
Eiu(t, f), Eiu(t− τ, f)

〉
=

〈
ai(t), ai(t− τ)

〉
+
〈
bi(t), bi(t− τ)

〉
= 2

〈
ai(t), ai(t− τ)

〉
. (22)

Thus, we have

〈
A1,A3

〉
= 2|Esu(f)|2

∑
i∈Ωd

cov
(
Eiu(t,f),Eiu(t−τ,f)

)
. (23)

Next, we derive the term
〈
A1,A4

〉
as shown in (24). Accord-

ing to the integral representation of the electric field in (3),
we have

|Eiu(t, f)|2

=

∫∫
4π

Fiu(Θ1)F
∗
iu(Θ2)exp(−j(~k(Θ1)−~k(Θ2))·~vit)dΘ1dΘ2,(25)
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γGu(τ, f) =
〈
Gu(t, f)− 〈Gu(t, f)〉, Gu(t− τ, f)− 〈Gu(t− τ, f)〉

〉
=

〈
2Re

{
E∗su(f)

∑
i∈Ωd

Eiu(t, f)
}

︸ ︷︷ ︸
A1

+
(∣∣ ∑

i∈Ωd

Eiu(t, f)
∣∣2 − 〈∣∣ ∑

i∈Ωd

Eiu(t, f)
∣∣2〉)︸ ︷︷ ︸

A2

,

2Re
{
E∗su(f)

∑
i∈Ωd

Eiu(t− τ, f)
}

︸ ︷︷ ︸
A3

+
(∣∣ ∑

i∈Ωd

Eiu(t− τ, f)
∣∣2 − 〈∣∣ ∑

i∈Ωd

Eiu(t− τ, f)
∣∣2〉)︸ ︷︷ ︸

A4

〉
. (20)

〈
A1,A4

〉
= 2

〈
u
∑
i∈Ωd

ai(t)+v
∑
i∈Ωd

bi(t),
( ∑
i∈Ωd

ai(t−τ)
)2

+
( ∑
i∈Ωd

bi(t−τ)
)2

−〈
∣∣ ∑
i∈Ωd

Eiu(t−τ, f)
∣∣2〉〉

= 2
〈
u
∑
i∈Ωd

ai(t) + v
∑
i∈Ωd

bi(t),
( ∑
i∈Ωd

ai(t− τ)
)2

+
( ∑
i∈Ωd

bi(t− τ)
)2〉

= 2u
∑
i∈Ωd

〈
ai(t), a

2
i (t− τ)

〉
+ 2v

∑
i∈Ωd

〈
bi(t), b

2
i (t− τ)

〉
. (24)

and thus, the covariance between Eiu(t, f) and |Eiu(t−τ, f)|2
can be expressed as

cov(Eiu(t, f), |Eiu(t− τ, f)|2)

=
〈
Eiu(t, f)−〈Eiu(t,f)〉,|Eiu(t−τ, f)|2−〈|Eiu(t−τ,f)|2〉

〉
=

〈
Eiu(t, f), |Eiu(t− τ, f)|2

〉
=

∫∫∫
4π

〈
Fiu(Θ1),Fiu(Θ21)F

∗
iu(Θ22)

〉
exp(−j~k(Θ1)·~vit)

exp(−j(~k(Θ21)−~k(Θ22))·~vi(t−τ)) dΘ1 dΘ21 dΘ22

=

∫
4π

〈
Fiu(Θ1), |Fiu(Θ1)|2

〉
exp(−j~k(Θ1) · ~vit) dΘ1

=

∫
4π

(〈
Re
{
Fiu(Θ1)

}
,Re

{
Fiu(Θ1)

}2〉
+

j
〈
Im
{
Fiu(Θ1)

}
,Im
{
Fiu(Θ1)

}2〉)
exp(−j~k(Θ1)·~vit)dΘ1

= 0, (26)

since 〈X3〉 ≡ 0 for any Gaussian random variable with zero
mean. At the same time, we have〈

Eiu(t, f), |Eiu(t− τ, f)|2
〉

=
〈
ai(t), a

2
i (t−τ)

〉
+j
〈
bi(t), b

2
i (t−τ)

〉
, (27)

and thus, we have
〈
ai(t), a

2
i (t−τ)

〉
= 0. Plugging this result

in (24), we can obtain〈
A1,A4

〉
= 0. (28)

Similarly, we can also derive that
〈
A2,A3

〉
= 0. At last, we

derive the term
〈
A2,A4

〉
as shown in (29). Since for any

two Gaussian random variables, X and Y , with zero mean,
the expectations can be evaluated by using of the following
relationship [38]:〈

X2Y 2
〉

=
〈
X2
〉〈
Y 2
〉

+ 2
〈
XY

〉2
, (30)

then, we have, ∀i ∈ Ωd,

cov
(
a2
i (t), a

2
i (t− τ)

)
=

〈
a2
i (t)−

〈
a2
i (t)

〉
, a2
i (t− τ)−

〈
a2
i (t− τ)

〉〉
=

〈
a2
i (t), a

2
i (t− τ)

〉
−
〈
a2
i (t)

〉〈
a2
i (t− τ)

〉
= 2

〈
ai(t), ai(t− τ)

〉2
=

1

2
cov
(
Eiu(t, f), Eiu(t− τ, f)

)2
. (31)

For i1, i2 ∈ Ωd and i1 6= i2, we have

cov
(
ai1(t)ai2(t), ai1(t− τ)ai2(t− τ)

)
=

〈
ai1(t)ai2(t), ai1(t− τ)ai2(t− τ)

〉
=

〈
ai1(t)ai1(t− τ), ai2(t)ai2(t− τ)

〉
=

〈
ai1(t), ai1(t− τ)

〉〈
ai2(t), ai2(t− τ)

〉
=

1

4
cov
(
Ei1u(t, f), Ei1u(t− τ, f)

)
cov
(
Ei2u(t, f), Ei2u(t− τ, f)

)
. (32)

Therefore,
〈
A2,A4

〉
can be derived as〈

A2,A4

〉
=

∑
i1,i2∈Ωd
i1≥i2

cov
(
Ei1u(t, f), Ei1u(t− τ, f)

)
cov
(
Ei2u(t, f), Ei2u(t− τ, f)

)
. (33)

Finally, we can obtain the result shown in (10).
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