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Abstract—With the development of the Internet of Things
technology, indoor tracking has become a popular application
nowadays, but most existing solutions can only work in line-of-
sight scenarios, or require regular re-calibration. In this paper, we
propose WiBall, an accurate and calibration-free indoor tracking
system that can work well in non-line-of-sight based on radio
signals. WiBall leverages a stationary and location-independent
property of the time-reversal focusing effect of radio signals for
highly accurate moving distance estimation. Together with the
direction estimation based on inertial measurement unit and
location correction using the constraints from the floorplan,
WiBall is shown to be able to track a moving object with
decimeter-level accuracy in different environments. Since WiBall
can accommodate a large number of users with only a single
pair of devices, it is low-cost and easily scalable, and can be a
promising candidate for future indoor tracking applications.

I. I NTRODUCTION

With the proliferation of the Internet of Things (IoT)
applications, Indoor Positioning and Indoor Navigation (IPIN)
has received an increasing attention in recent years. Technavio
forecasts the global IPIN market to grow to USD 7.8 billion by
2021 [1], and more than ever before, enterprises of all sizes
are investing in IPIN technology to support a growing list
of applications, including patient tracking in hospitals, asset
management for large groceries, workflow automation in large
factories, navigation in malls, appliance control, etc.

Although Global Positioning System (GPS) can achieve
good accuracy with a low cost in outdoor real-time tracking,
such a good balance between the cost and performance has
not been realized for indoor tracking yet [2].

In this paper, we propose WiBall, a wireless system for
indoor tracking, that can work well in both none-line-of-
sight (NLOS) and line-of-sight (LOS) scenarios and is robust
to environmental dynamics as well. WiBall estimates the
incremental displacement of the device at every moment, and
thus, it can track the trace of the device in real time. WiBall
adopts a completely new paradigm in the moving distance
estimation, which is built on the proposed discovered physical
phenomenon of radio signals. In the past, the moving distance
estimation can be done by analyzing the output of IMU that
is attached to the moving object. Accelerometer readings are
used to detect walking steps and then, the walking distance
can be estimated by multiplying the number of steps with the
stride length [3]. However, pedestrians often have different

stride lengths that may vary up to40% even at the same speed,
and 50% with various speeds of the same person [4]. Thus
calibration is required to obtain the average stride lengths for
different individuals, which is impractical in real applications
and thus has not been widely adopted. The moving distance
can also be estimated by analyzing radio signals that are
affected by the movement of the device. Various methods
have been proposed based on the estimation of the maximum
Doppler frequency, such as level crossing rate methods [5], co-
variance based methods [6][7], and wavelet-based methods [8].
However, the performance of these estimators is unsatisfactory
in practical scenarios. For example, the approach in [7] can
only differentiate whether a mobile station moves with a fast
speed (≥ 30km/h) or with a slow speed (≤ 5km/h).

In WiBall, a new scheme for moving distance estimation
based on the time-reversal (TR) resonating effect [9][10]
is proposed. TR is a fundamental physical resonance phe-
nomenon that allows people to focus the energy of a transmit-
ted signal at an intended focal spot, both in the time and spatial
domains, by transmitting the TR waveform. The research of
TR can be traced back to the 1950s when it was first utilized to
align the phase differences caused by multipath fading during
long-distance information transmissions. The TR resonating
effect was first observed in a practical underwater propagation
environment [11] that the energy of a transmitted signal can
be refocused at the intended location because by means of TR
the RX recollects multipath copies of a transmitted signal in
a coherent matter.

In this paper, we present a new discovery that the energy
distribution of the TR focusing effect exhibits a location-
independent property, which is only related to the physical
parameters of the transmitted EM waves. This is because
the number of multipath components (MPC) in indoors is so
large that the randomness of the received energy at different
locations can be averaged out as a result of the law of large
numbers. Based on this location-independent feature, WiBall
can estimate the moving distance of the device in a com-
plex indoor environment without requiring any pre-calibration
procedures. To cope with the cumulative errors in distance
estimation, WiBall incorporates the constraints imposed by
the floorplan of buildings and corrects the cumulative errors
whenever a landmark, such as a corner, hallway, door, etc.,
is met. Combining the improved distance estimator and the
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map-based error corrector, the proposed WiBall is shown to be
able to achieve decimeter-level accuracy in real-time tracking
regardless of the moving speed and environment.

The rest of the paper is organized as follows. Section II
introduces the related works. Section III introduces the system
architecture of WiBall followed by a discussion on the TR
principle for distance estimation. Section IV presents an IMU-
based moving direction estimator and a map-based localization
corrector, which can correct the accumulated localization error.
Experimental evaluation is shown in Section V and Section VI
concludes the paper.

II. RELATED WORKS

Existing solutions for indoor tracking can be classified
into four categories: vision based, audio based, radio based,
and inertial measurement unit (IMU) based. Vision-based
approaches, such as camera [12], laser [13], infrared [14],
etc., suffer from high cost of deployment and equipmen-
t, sophisticated calibrations and limited coverage, although
a very high accuracy can be achieved. The acoustic-based
schemes [15] can only cover a limited range and are not
scalable to a large number of users. The performance of
radio-based approaches, such as RADAR [16], RFID [17] and
UWB localization systems [18] [19], is severely affected by
the NLOS multipath propagation which is unavoidable for a
typical indoor environment. The localization accuracy of IMU-
based methods [3][4] is mainly limited by the poor estimation
of moving distance and the drifting of the gyroscope.

Due to the wide deployment of WiFi in indoors, various
indoor localization systems based on WiFi have been pro-
posed, as summarized in Table I. In general, these works can
be classified into two categories: modeling-based approach
and fingerprinting-based approach. The features utilized in
these approaches can be obtained either from the MAC layer
information, e.g., receive signal strength indicator (RSSI)
readings and the timestamps of the received packets at the
receiver (RX), or from the PHY information, e.g., the channel
state information (CSI).

In the modeling-based schemes, either the
distance [20][21][22][23] or the angle [24][25][26] between
an anchor point and the device can be estimated and the device
can be localized by performing geometrical triangulation.
The distance between the anchor point and the device can
be estimated from the decay of RSSI [27] or from the time
of arrival (ToA) of the transmitted packets which can be
extracted from the timestamps of the received packets [28].
The angle in between can be obtained by examining the
features of the CSI received by multiple receive antennas,
and then, the angle of arrival (AoA) of the direct path to the
target can be calculated. ToA-based methods typically require
synchronization between the anchor point and the device and
thus are very sensitive to timing offsets [29]; AoA-based
methods require an array of phased antennas which are not
readily available in commercial WiFi chips [25]. Recently, a
decimeter-level tracking system, Widar, is proposed in [30]
and [31], however, the system can only work in a small area
with the constraint of LOS. The main challenges for the

TABLE I: A brief summary of typical WiFi-based approaches

Method Existing Solutions

Modeling-
based

ToA CAESAR [20], ToneTrack [28]
AoA ArrayTrack [36], SpotFi [24], Phaser [25]
RSSI RADAR [22]
CSI FILA [37]

Fingerprinting-
based

RSSI Horus [27], Nibble [32]
CSI PinLoc [38], TRIPS [35], DeepFi [33]

modeling-based approaches are the blockage and reflection of
the transmitted signal since only the signal coming from the
direct path between the anchor point and the device is useful
for localization.

The fingerprinting-based schemes consist of an offline phase
and an online phase. During the offline phase, features asso-
ciated with different locations are extracted from the WiFi
signals and stored in a database; in the online phase, the same
features are extracted from the instantaneous WiFi signals
and compared with the stored features so as to classify the
locations. The features can be obtained either from the vector
of RSSIs [27][32] or the detailed CSI [33][34][35] from a
specific location to all the anchor points in range. A major
drawback of the fingerprinting-based approaches lies in that
the features they use are susceptible to the dynamics of the
environment. For example, the change of furniture or the status
of doors may have a severe impact on these features and
the database of the mapped fingerprints need to be updated
before it can be used again. In addition, the computational
complexity of the fingerprinting-based approaches scales with
the size of the database and thus they are not feasible for
low-latency applications, especially when the number of the
collected fingerprints is large.

In sum, the performance of most existing solutions for
indoor localization degrades dramatically under NLOS con-
ditions, which are common usage scenarios though. Even
with a significant overhead in the manual construction of
the database, the fingerprinting-based approaches still fail to
achieve a decimeter-level accuracy. Therefore, indoor location-
based services are not provided as widespread as expected
nowadays, which motivates us to design a highly accurate
and robust indoor tracking system even without requiring
specialized infrastructure.

III. TR FOCUSING BALL METHOD FORDISTANCE

ESTIMATION

In this section, we first introduce the overall system archi-
tecture of WiBall and the TR radio system. Then, we derive the
analytical normalized energy distribution of the TR focal spot.
We show that the normalized energy distribution is location-
independent and can be used to estimate distance. Last, we
discuss the TR-based distance estimator.

A. Overview of WiBall

WiBall consists of a transmitter (TX) broadcasting beacon
signals periodically to all the RXs being tracked. WiBall
estimates the paths that the RX travels, i.e., the location of
the RX ~x at time ti is estimated as

~x(ti) = ~x(ti−1) + ~∆(ti), (1)
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where~x(ti−1) represents the location of the RX at the previous
time ti−1, and ∆(ti) is the incremental displacement. The
magnitude of~∆(ti), denoted asd(ti), and the angle of~∆(ti),
denoted asθ(ti), correspond to the moving distance and
the change of moving direction of the RX fromti−1 to ti,
respectively. As shown in Fig. 1, the location of the RX at
time tn is computed based on the accumulative displacements
from time t0 to tn and the initial start point~x(t0).

WiBall estimates the moving distanced(ti) based on the
TR resonating effect, which can be obtained from the CSI
measurements at the RX. The estimation ofθ(ti) is based on
the angular velocity and gravity direction from IMU, which is
a built-in module for most smartphones nowadays.

X(t0)

Origin

(t0)

X(t1)

X(t2)

X(tn-1)

X(tn)

(t0)

(t1)

Fig. 1: Illustration of the tracking procedure.

B. TR Radio System

Consider a rich-scattering environment, e.g., an indoor
or metropolitan area, and a wireless transceiver pair each
equipped with a single omnidirectional antenna. Given a large
enough bandwidth, the MPCs in a rich-scattering environment
can be resolved into multiple taps in discrete-time and let
h(l; ~T → ~R0) denote thel-th tap of the channel impulse
response (CIR) from~T to ~R0, where ~T and ~R0 denotes
the coordinates of the TX and RX, respectively. In the TR
transmission scheme, the RX at~R0 first transmits an impulse
and the TX at~T captures the CIR from~R0 to ~T . Then the RX
at ~T simply transmits back the time-reversed and conjugated
version of the captured CIR, i.e.,h∗(−l; ~R0 → ~T ), where∗
denotes complex conjugation. With channel reciprocity, i.e.,
the forward and backward channels are identical [35], the
received signal at any location~R when the TR waveform
h∗(−l; ~R0 → ~T ) is transmitted can be written as [39]

s(l; ~R) =

L−1
∑

m=0

h(m; ~T → ~R)h∗(m− l; ~R0 → ~T ), (2)

whereL is the number of resolved multipaths in the envi-
ronment. When~R = ~R0 and l = 0, we haves(0; ~R) =
∑L−1

m=0 |h(m, ~T → ~R0)|
2 with all MPCs added up coherently,

i.e., the signal energy is refocused at a particular spatial

Channel Probing Table
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A B

Train track
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(a) TR prototype and channel probing platform.
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(b) TRRS in spatial domain
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(c) TRRS in time domain

Fig. 2: TR prototype and the environment of the measurement,
the TRRS distribution in the spatial domain, and the normal-
ized energy of the received signal at the focal spot~R0 in the
time domain.

location at a specific time instance. This phenomenon is
termed as the TR spatial-temporal resonating effect [40][41].

To study the TR resonating effect in the spatial domain, we
fix time index l = 0 and define the TR resonating strength
(TRRS) between the CIRs of two locations~R0 and ~R as
the normalized energy of the received signal when the TR
waveform for location~R0 is transmitted:

η(h(~R0),h(~R))

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s(0; ~R)
√

L−1
∑

l1=0

|h(l1; ~T → ~R0)|2

√

L−1
∑

l2=0

|h(l2; ~T → ~R)|2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

,(3)

where we useh(~R) as an abbreviation ofh(l; ~T → ~R), l =
0, ..., L − 1, when ~T is fixed. Note that the range of TRRS
is normalized to be[0, 1] and TRRS is symmetric, i.e.,
η(h(~R0),h(~R)) = η(h(~R),h(~R0)).

We built a pair of customized TR devices to measure the
TRRS at different locations, as shown in Fig. 2a. The devices
operate atf0 = 5.8GHz ISM band with125MHz bandwidth,
and the corresponding wavelength isλ = c/f0 = 5.17cm. The
RX is placed on a5 cm× 5 cm square area above a channel
probing table with0.5cm resolution, and the center of the
square is set to be the focal spot~R0. The TRRS distribution
around~R0 in the spatial domain and the normalized received
energy at~R0 in the time domain are shown in Fig. 2b and
Fig. 2c, respectively. As we can see from the results, the
received energy is concentrated around~R0 both in spatial
and time domains almost symmetrically, which shows that a
bandwidth of125MHz is able to achieve the TR resonating
effect in a typical indoor environment.
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C. Energy Distribution of TR Focal Spot

Assume that all the EM waves propagate in a far-field zone,
and then each MPC can be approximated by a plane EM wave.
For the purpose of illustration, the receive antenna is placed
in the origin of the space and each MPC can be represented
by a point in the space whose coordinate is determined by its
angle of arrival and propagation distance, e.g., the pointA, as
shown in Fig. 3, wherer stands for the total traveled distance
of the MPC,θ denotes the direction of arrival of the MPC,
andG(ω) denotes the power gain withω = (r, θ). In a rich-
scattering environment, we can also assume thatω is uniformly
distributed in the space and the total number of MPCs is large.
When a vertically polarized antenna is used, only the EM
waves with the direction of electric field orthogonal to the
horizontal plane are collected. Then, the received signal is
just a scalar sum of the electric field of the impinging EM
waves along the vertical direction. In the sequel, without loss
of generality, we only consider the TRRS distribution in the
horizontal plane since its distribution in the vertical plane is
similar.

0RR

Rd

k

( )G w

( , )rw q=TX
LOS

A

x

y

Fig. 3: Illustration of the polar coordinates in the analysis.

For a system with bandwidthB, two MPCs would be
divided into different taps of the measured CIR as long as the
difference of their time of arrival is larger than the sampling
period1/B, that is, any two MPCs with a difference of their
traveled distances larger thanc/B can be separated. With a
sufficiently large system bandwidthB, the distance resolution
c/B of the system is so small that all of the MPCs with
significant energy can be separated in the spatial domain, i.e.,
each significant MPC can be represented by a single tap of a
measured CIR. Assume that the distribution of the energy of
each MPC is uniform in directionθ, i.e., the distribution of
G(ω) is only a function ofr. Then the energy of MPCs coming
from different directions would be approximately the same
when the number of MPCs is large. Mathematically, for any
point ~R in a source-free region with constant mean electric and
magnetic fields, the channel impulse response when a delta-

like pulse is transmitted can be written as [39]

h(t; ~T → ~R)

=
∑

ω∈Ω

G(ω)q(t−τ(ω))ei(2πf0(t−τ(ω))−φ(ω)−~k(ω)·~R), (4)

whereq(t) is the pulse shaper,τ(ω) = r/c is the propagation
delay of the MPCω, f0 is the carrier frequency,Ω is the set of
MPCs,φ(ω) is the change of phase due to reflections and~k(ω)
is the wave vector with amplitudek = c/f0. Accordingly, the
l-th tap of a sampled CIR at location~R can be expressed as

h(l; ~T → ~R)

=
∑

τ(ω)∈[lT−
T

2
,lT+T

2
)

G(ω)q(∆τ(l, ω))ei(2πf0∆τ(l,ω)−φ(ω)−~k(ω)·~R) (5)

whereT is the channel measurement interval and∆τ(l, ω) =
lT − τ(ω) for l = 0, 1, ..., L − 1. When the TR waveform
h∗(−l; ~R0 → ~T ) is transmitted, the corresponding received
signal at the focal spot~R0 can be written as

s(0; ~R)

=

L
∑

l=1

∣

∣

∣

∣

∣

∣

∑

τ∈[lT−
T

2
,lT+T

2
)

G(ω)q(∆τ(l,ω))ei(2πf0∆τ(l,ω)−φ(ω))

∣

∣

∣

∣

∣

∣

2

.(6)

(6) shows that the MPCs with propagation delaysτ(ω) ∈
[lT − T

2 , lT + T
2 ) for each l would be merged into one

single tap, and the signals coming from different taps would
add up coherently while the MPCs within each sampling
period T would add up incoherently. It indicates that the
larger the bandwidth, the larger the TR focusing gain that
can be achieved, since more MPCs can be aligned and added
up coherently. When the bandwidth is sufficiently large, the
received signal at each point~R can be approximated as

s(0; ~R) ≈
L
∑

l=1

|G(ω)q(∆τ(l, ω))|2e−i~k(ω)·(~R−~R0). (7)

When a rectangular pulse shaper is used, i.e.,q(t) = 1 for t ∈
[−T

2 ,
T
2 ) and q(t) = 0 otherwise, under the above symmetric

scattering assumption the received signals(0; ~R) can thus be
approximated as

s(0; ~R) =
∑

ω∈Ω

|G(ω)|2e−i~k·(~R−~R0)

≈

∫ 2π

0

P (θ)e−ikd cos(θ)dθ

= PJ0(kd), (8)

where the coordinate system in Fig. 3 is used,Ω stands for
the set of all significant MPCs,J0(x) is the0th-order Bessel
function of the first kind, andd is the Euclidean distance
between ~R0 and ~R. Here we use a continuous integral to
approximate the discrete sum andP (θ) = P denotes the
density of the energy of MPCs coming from directionθ.
For ~R = ~R0, it degenerates to the case ofd = 0 and thus
s(0; ~R0) ≈ P . Since the denominator of (3) is the product
of the energy received at two focal spots, it would converge
to P 2. At the same time, the numerator is approximately
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Fig. 4: The distributions of TRRS.

P 2J2
0 (kd) as discussed above. As a result, the TRRS defined

in (3) can be approximated as

η(h(~R0),h(~R)) ≈ J2
0 (kd). (9)

In the following, since the theoretic approximation of the
TRRS distribution only depends on the distance between two
points, we usēη(d) = J2

0 (kd) to stand for the approximation
of TRRS between two points with distanced.

To evaluate the above theoretic approximation, we also built
a mobile channel probing platform equipped with stepping
motors that can control the granularity of the CIR mea-
surements precisely along any predefined direction. Extensive
measurements of CIRs from different locations have been
collected in the environment shown in Fig. 2a. Fig. 4a shows
two typical experimental results measured at Location 1 and
Location 2 with a separation of10m as shown in Fig. 2a. The
distanced away from each predefined focal spot increases
from 0 to 2λ with a resolution of1mm. The measured TRRS
distribution functions agree with the theoretic approximation
quite well in the way that the positions of the peaks and valleys
in the measured curves are almost the same as those of the
theoretic curve. Although Locations 1 and 2 are far apart, the
measured TRRS distribution functions exhibit similar damping
pattern when the distanced increases.

We also observe that the measured TRRS distribution
functions are far above0. This is due to the contribution
of the direct path between the TR devices. Therefore, the
energy density functionP (θ) in (8) consists of a term which
is symmetric in direction due to NLOS components and
another term which is asymmetric in direction due to LOS
components. As a result, the TRRS is indeed a superposition
of J2

0 (kd) and some unknown function which is the result
of the asymmetric normalized energy distribution of MPCs in
certain directions. Since the pattern ofJ2

0 (kd), embedded in
the TRRS distribution function, is location-independent, we
can exploit this feature for speed estimation.

A numerical simulation using a ray-tracing approach is
also implemented to study the impact of bandwidth on TRRS
distribution. In the simulation, the carrier frequency of the
transmitted signals is set to be5.8 GHz. 200 scatterers are
uniformly distributed in a7.5 m by 7.5 m square area. The
reflection coefficient is distributed uniformly and independent-
ly in (0, 1) for each scatterer. The distance between the TX
and RX is30 m and the RX (focal spot) is set to be the center
of the square area. Fig. 5 shows the distributions of TRRS
around the focal spot when the system bandwidth40 MHz,
125 MHz and500 MHz, respectively. As we can see from the
results, as the bandwidth increases, the distribution of TRRS
in the horizontal plane becomes more deterministic-like and
converges to the theoretical approximations.
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Fig. 5: Numerical simulations of the distributions of TRRS
with varying bandwidth.

D. TR-Based Distance Estimator

Since the shape of the TRRS distribution functionη̄(d) ≈
J2
0 (kd) is only determined by the wave numberk which is

independent of specific locations, it can be utilized as an
intrinsic ruler to measure distance in the space. Consider that
an RX moves along a straight line with a constant speedv
starting from location~R0, and a TX keeps transmitting the TR
waveform corresponding to~R0 at regular intervals. Then, the
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TRRS measured at the RX is just a sampled version ofη(d),
which would also exhibit the Bessel-function-like pattern, as
illustrated in Fig. 4b.

Take the first local peak ofη(d) for example. The cor-
responding theoretical distanced1 is about0.61λ according
to the Bessel-function-like pattern. In order to estimate the
moving speed, we only need to estimate how much time
t̂ it takes for the RX to reach the first local peak starting
from point ~R0. We use a quadratic curve to approximate the
shape of the first local peak. Combining the knowledge of the
timestamps of each CIR measurement,t̂ can be estimated by
the vertex of the quadratic curve. Therefore, we obtain the
speed estimation aŝv = (0.61λ)/t̂, and then, the moving
distance can be calculated by integrating the instantaneous
speed over time. One thing to note is that as long as the rate
of CIR measurement is fast enough, it is reasonable to assume
that the moving speed is constant during the measurement of
the TRRS distribution. For example, in Fig. 4b the duration is
about0.16 seconds.

In practice, the channel is not measured with a uniform
interval and the empirical probability density function (PDF)
of the time interval between adjacent channel measurements is
shown in Fig. 6. To overcome the imperfect channel sampling
process, we combine multiple realizations of the TRRS dis-
tribution function measured at adjacent time slots to increase
the accuracy of the estimation oft̂. For thei-th measurement,
first find the data points near the first local peak(ti,j , yi,j),
i = 1, ..., N , j = 1, 2, 3, as shown in Fig. 4b, whereN is
the number of TRRS distribution functions obtained within
the window of channel measurements. Then fit the data points
with a quadratic regression modelyi,j = α+βti,j+γt2i,j+ei,j,
and thus estimation of the elapsed time ist̂ = −β̂LS/(2γ̂LS),
where β̂LS and γ̂LS are the least-square estimators ofβ and
γ, respectively. Different reference points can be used as well,
such as the first local valley, the second local peak and so on,
to increase the accuracy of estimation. Therefore, the moving
distance at timet can be estimated aŝd(t) = v̂(t)∆t, where
∆t denotes the time duration between the current packet and
the previous packet. The procedures of the proposed TR-
based distance estimator has been summarized in the flowchart
shown in Fig. 7.
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Fig. 6: Empirical probability density for time intervals be-
tween adjacent packets.

Note that besides taking advantage of TR spatial focusing
effect, the proposed distance estimator also exploits the phys-
ical properties of EM waves and thus does not require any

Compute TRRS

distribution functions 

Localize the first local peak of

each TRRS distribution function
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Estimate the average

speed within the window

Channel

measurement

Distance
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Fig. 7: Flowchart of the TR-based distance estimator.

pre-calibration, while the estimator presented in our previous
work [40] needs to measure the TRRS spatial decay curve in
advance.

IV. M OVING DIRECTION ESTIMATION AND ERROR

CORRECTION

In this section, we introduce the other two key components
of WiBall: the IMU-based moving direction estimator and the
map-based position corrector.

A. IMU-based Moving Direction Estimator

If the RX is placed in parallel to the horizontal plane,
the change of moving direction can be directly measured by
the readings of the gyroscope in thez-axis, i.e., θ(ti) =
ωz(ti−1)(ti − ti−1), whereωz(ti−1) denotes the angular ve-
locity of the RX with respect toz-axis in its local coordinate
system at time slotti−1. However, in practice, the angle of
the inclination between the RX and the horizontal plane is not
zero, as shown in Fig. 8, and WiBall needs to transform the
rotation of the RX into the change of the moving direction in
the horizontal plane. Since the direction of the gravity~g/‖~g‖
can be estimated by the linear accelerometer, the rotation of the
RX in the horizontal plane, which is orthogonal to the~g/‖~g‖,
can be obtained by projecting the angular velocity vector
~ω = ωxx̂ + ωyŷ + ωzẑ with respect to its local coordinate
system onto the direction~g/‖~g‖. Therefore, the change of
moving directionθ(ti) is obtained as

θ(ti) =
~ωT (ti−1)~g(ti−1)

‖~g(ti−1)‖
· (ti − ti−1), (10)

where ~ω(ti−1) and ~g(ti−1) denote the vector of angular
velocity and the gravity at timeti−1, respectively.

B. Map-based Position Corrector

Since WiBall estimates the current location of the RX based
on the previous locations, its performance is limited by the
cumulative error. However, for typical indoor environments,
there are certain constraints in the floorplan which can be
utilized as landmarks and thus, the cumulative errors may be
corrected correspondingly as long as a landmark is identified.
For example, Fig. 9 shows a T-shaped corridor and two
possible estimated paths are illustrated in the figure. The
moving distance of path #1 is underestimated and that of path
#2 is overestimated, while the dotted line corresponds to the
ground truth path. Both of the estimated traces would penetrate
the wall in the floorplan if the errors are not corrected, which
violates the physical constraints imposed by the structure of
the building. In these two cases, a reasoning procedure can
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Fig. 8: Transforming the rotation of RX into the moving
direction in horizontal plane.

Fig. 9: Two possible estimated paths and the ground truth
path.

be implemented and WiBall tries to find the most possible
path that can be fitted to the floorplan where all the border
constraints imposed by the floorplan are satisfied. Therefore,
the cumulative errors of both the distance estimations and
direction estimations can be corrected when a map-based
position correction is implemented.

V. PERFORMANCEEVALUATION

To evaluate the performance of WiBall, various experiments
are conducted in different indoor environments using the
prototype as shown in Fig. 2a. In this section, we first evaluate
the performance of the TR-based distance estimator. Then,
the performance of WiBall in tracking a moving object in two
different environments is studied. At last, the impact of packet
loss and system window length on the proposed system is also
discussed.

A. Evaluations of TR Distance Estimator

The first experiment is to estimate the moving distance of a
toy train running on a track. We put one RX on a toy train as
shown in Fig. 10a and place one TX about20m from the RX
with two walls between them. The sampling period between
adjacent channel measurement is set toT = 5ms. CIRs are
collected continuously when the toy train is running on the

track. We also set an anchor point as shown in Fig. 10a on
the train track and collect the CIR when the train is at the
anchor. The TRRS values between all the measured CIRs and
the CIR of the anchor are computed and shown in Fig. 10b.
The peaks in the red line indicate that the train passes the
anchor three times. The estimated length of the track for this
single loop is8.12m and the error is1.50%, given the actual
length of the train track is8.00m. The train slows down when
it makes turns due to the increased friction and then speeds
up in the straight line. This trend is reflected in the speed
estimation shown by the blue curve. To show the consistency
of the distance estimator over time, we collect the CIRs for
100 laps in total and estimate the track length for each lap
separately. The histogram of the estimation results is shown
in Fig. 11. The mean of the estimation error is about0.02m
and the standard error deviation is about0.13m, which shows
that the estimation is consistent even over a long period.

(a) The toy train and the train track used
in the experiment.
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(b) The estimated speed of the toy train over time.

Fig. 10: Tracking the speed of the toy train.

The second experiment is to estimate the human walking
distance. One RX is put on a cart and one participant pushes
the cart along the line from point A to point B shown in Fig. 2a
with an approximately constant speed of1m/s. To control the
walking speed, the participant uses a timer and landmarks
placed on the floor during the experiment. In the upper panel
of Fig. 12a, for each timet, the TRRS values between the CIR
measured at timet and those measured at timet−∆t, where
∆t ∈ (0s, 0.16s], are plotted along the vertical axis. As we can
see from the figure, when the person moves slowly (e.g., at the
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Fig. 11: The histogram of the estimated track lengths for a
total of 100 experiments.
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(b) The results for walking distance estimation.

Fig. 12: Human walking speed/distance estimation.

beginning or the end of the experiment), the time differences
between the local peaks of the measured TRRS distribution
along the vertical axis are greater than that when the person
moves faster. In addition, fort ∈ [0.5s, 3.5s], the asymmetric
part of the density functionP (θ) of the energy of MPCs is
more significant compared to the case whent ∈ [3s, 9.5s] and

thus the pattern ofJ2(kd) is less obvious than the latter one.
The bottom panel of Fig. 12a shows the corresponding walking
speed estimation. The actual distance is8m and the estimated
walking distance is7.65m, so the corresponding error is4.4%.
The loss of performance is from the blockage of signals by the
human body, which reduces the number of significant MPCs.

We further let the participant carry the RX and walk for
a distance of2m, 4m, 6m, 8m, 10m and12m, respectively.
The ground-truth travel distances are measured by a laser
distance meter. For each ground-truth distance, the experiment
is repeated20 times with different paths and the walking
speed does not need to be constant. The results are shown
in Fig. 12b, where the5, 25, 75, and95-th percentiles of the
estimated distances for each actual distance are plotted from
the bottom line to the top line for each block. We find that
when the ground-truth distance is small, the error tends to be
large. This is mainly because the participant could introduce
additional sources of errors which are uncontrollable, such as
not following the path strictly, shaking during walking, and not
stopping at the exact point in the end. When the distance is
short, the impact of this kind of error can be magnified greatly.
However, when the walking distance is large, the impact of the
uncontrollable errors on the estimation result is insignificant.

B. Estimated Traces in Different Environment

We evaluate the performance of indoor tracking using
WiBall in two sets of experiments. In the first set of experi-
ments, a participant walks inside a building with a large open
space. He carriers the RX with him and walks from Point A
on the second floor to point B on the first floor, as shown
in Fig. 13a. The TX is placed closed to the middle of the
path on the second floor. The dimension of the building is
around94m × 73m. Although the moving distance of the
first segment of the path is overestimated, the estimated path
is corrected when the participant enters the staircase leading
to the first floor.

In the second set of experiments, the participant walks
inside an office environment. Fig. 13b demonstrates a typical
example of the estimated traces in a typical office of a multi-
storey. One RX is put on a cart and the participant pushes the
cart along the route from Point A to Point B, as illustrated
in the figure. The dimension of the environment is around
36.3m × 19m and the placement of the TX is also shown
in the figure. As we can see from the figure, the estimated
path matches the ground truth path very well because the
cumulative errors have been corrected by the constraints from
the floorplan.

C. Statistical Analysis of Localization Error

To evaluate the distribution of the localization errors, ex-
tensive experiments have been conducted in the same office
environment shown in Fig. 13b. The participant pushes the
cart with the RX on the cart, following the route as shown in
Fig. 14.

The RX starts from Point A and stops at different locations
in the route shown in Fig. 14. The lengths of the chosen paths
are5, 21, 25, 30, 40, 64, and69m, respectively, and the end of
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Fig. 13: Experiment results in different environments.
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Fig. 14: The route for the evaluation of statistical errors.

each path is marked with two green circles. For each specific
path, the experiment is repeated for25 times. The estimation
error for different paths has been analyzed through empirical
cumulative distribution function (CDF), as shown in Fig. 15.
Based on the results, the median of the estimation error for
the selected paths is around0.33m, and the80 percentile of
the estimation error is within1m. Therefore, WiBall is able
to achieve a sub-meter median error in this complex indoor
environment.
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Fig. 15: Empirical CDF of localization error.

D. Impact of Packet Loss on Distance Estimation

In the previous experiments, WiBall operates on a vacant
band and the packet loss rate can thus be neglected. However,
in practice, the RF interference from other RF devices operated
on the same frequency band will increase the packet loss rate.
Since WiBall relies on the first peak of the TRRS distribution
for distance estimation, enough samples need to be collected
so as to estimate the first peak accurately, and a high packet
loss can affect the peak estimation and thus increase distance
estimation error.
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Fig. 16: The impact of packet loss on the accuracy of distance
estimation.

To study the impact of RF interference, a pair of RF devices
is configured to operate in the same frequency band of WiBall
to act as an interference source, and we run the tracking
system for100 times with the ground-truth distance being
10m. When the interfering devices are placed closer to the
transmission pair of WiBall, WiBall encounters a higher packet
loss rate. Therefore, to obtain various packet loss rates, the
interfering devices are placed at different locations during
the experiment. The average estimated distance and standard
deviation of the estimation under different packet loss rates
are shown in Fig. 16. It is seen that a large packet loss rate
would lead to an underestimation of the moving distance and
increase the deviations of the estimates.
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E. Impact of Window Length on Distance Estimation

In the following, the impact of window length on the
performance of the proposed TR-based distance estimator is
studied. One implicit assumption of the proposed estimator
is that the speed of the moving device is constant within the
observation window of channel measurements. The length of
the observation window should be at least0.61λ/v, wherev
is the actual speed of the device. Furthermore, more samples
of channel measurements will also improve the accuracy oft̂
as described in Section III-D. Therefore, the window length is
an important system parameter of WiBall.

In the following experiments, one RX is put on a toy train
whose speed can be tuned and remains constant during each
experiment. One TX is placed in two different locations: a
LOS location where the RX is within the fields of vision
of the TX, and a NLOS location where the direct path
between the RX and TX is blocked by walls. The TX keeps
transmitting packets with a uniform interval of5 ms. Two
experiments are conducted for each location of the TX with
two different speeds of the toy train,0.72 m/s and0.63 m/s,
respectively, and each experiment lasts10 minutes. The5 and
95-th percentiles and the sample mean of the estimated speed
have been shown in Fig. 17 with different window lengths. It
can be observed that when the window length is smaller than
30 samples, the speed estimates have a bias for the both cases;
when the window length is greater or equal to30 samples, the
bias is close to0 and the range of the estimates becomes stable.
In addition, a higher accuracy can be achieved when the TX
is placed in the NLOS location.
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Fig. 17: Impact of window length in terms of speed estima-
tions.

VI. CONCLUSIONS

In this work, we propose WiBall, which offers an accu-
rate, low-cost, calibration-free and robust solution for INIP
in indoor environments without requiring any infrastructure.
WiBall leverages the physical properties of the TR focusing
ball in radio signals, such as WiFi, LTE, 5G, etc., to estimate
the moving distance of an object being monitored and does
not need any specialized hardware. It is shown through ex-
tensive experiments that WiBall can achieve a decimeter-level
accuracy. WiBall is also easily scalable and can accommodate
a large number of users with only a single access point or
TX. Therefore, WiBall can be a very promising candidate for
future indoor tracking systems.
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