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Abstract—Global navigation satellite systems (GNSSs) can
deliver very good position estimates under optimum conditions.
However, especially in urban and indoor scenarios with severe
multipath propagation and blocking of satellites by buildings the
accuracy loss can be very large. Using WiFi for indoor positioning
is a common approach because WiFi infrastructure is widely
deployed. Recently the WiFi IEEE 802.11-2016 standard was
released, which includes a fine timing measurement (FTM) proto-
col, more commonly known as WiFi-round-trip-time (WiFi-RTT)
protocol, for WiFi ranging. This paper researches timing based
positioning algorithms, in this case using WiFi-RTT distance
estimates. Based on two measurement campaigns, in an antenna
measurement chamber and in a typical indoor environment, a
WiFi-RTT distance error model is derived. Both measurement
campaigns show, that the distance is underestimated, hence, the
estimated distance is lower than the true distance. The WiFi-
RTT distance error model is included in the likelihood function
of a particle filter (PF) and the positioning performances is
evaluated in an indoor scenario. These evaluations show clearly
the possibility of using WiFi-RTT distance estimates for indoor
positioning.

I. INTRODUCTION

The proliferation of smartphones has made positioning

technologies available to a wide range of users [1]. For out-

door localization, global navigation satellite systems (GNSSs)

are the most well-known and mostly used technologies for

positioning. In open sky conditions, GNSSs provide sufficient

position accuracy for most mass market applications. However,

inside buildings or in urban canyons the GNSS positioning

accuracy might be drastically reduced. In these situations, the

GNSS signals might be affected by multipath effects, received

with low power or even blocked. To enhance the position-

ing performance, different methods and sensor systems can

provide position information to complement GNSSs [2], [3].

Most of the indoor positioning systems use local infrastructure

like positioning with radio frequency identification (RFID) [4],

mobile communication base-stations [5], [6], Bluetooth, WiFi

[7] or ultra-wideband (UWB) systems [8]–[13].

Using WiFi for indoor positioning is a common approach

because WiFi infrastructure is widely deployed [14], [15].

Fingerprinting approaches for positioning with WiFi are very

common. They measure the received signal strengths (RSSs) of

signals coming from nearby WiFi transmitters. Fingerprinting

approaches consist typically of a training phase and a posi-

tioning phase: In the training phase, RSSs measurements are

recorded and stored at defined locations in order to build a

RSSs map of the environment. During the positioning phase,

the position of the receiver can be estimated by correlating the

measured RSS with the preconstructed map. The coordinates

corresponding to the closest RSS match are returned as an

estimate for the receiver position. The main drawback of the

fingerprinting approach is that the generation and maintenance

of the RSSs maps is time-consuming and expensive when

performed over wide areas. Additionally, the RSS can vary

extremely caused by body shading, changes in the environ-

ment, different receiver hardware, etc. Hence, it is very hard

to obtain an accurate position estimate based on this type of

measurements.

In 2016 a new WiFi standard was released which promises

a great improvement in the positioning accuracy. The

IEEE 802.11-2016 standard, sometimes referred to as IEEE

802.11mc, includes a fine timing measurement (FTM) protocol

for WiFi ranging [16]. The WiFi FTM protocol, more com-

monly known as WiFi-round-trip-time (WiFi-RTT) protocol

allows computing devices, e.g. smartphones, to estimate the

distance to nearby WiFi access points (APs). The devices do

not have to be connected to the APs. The distance is calculated

on the device, which helps to maintain privacy. The ranging

process starts at the device with a standard WiFi scan and the

device sends a FTM request to the AP for estimating the WiFi-

RTT. If the AP accepts the FTM request, the device and the

AP are exchanging messages where the arrival and departure

time stamps of the messages on both sides are recorded. At

the end, the time stamps recorded at the AP are sent to the

device which can calculate the total WiFi-RTT.

In 2018, Google released with Android Pie a smartphone

operating system supporting WiFi FTM. Hence, WiFi FTM

became available to a wide range of developers, especially

for indoor scenarios. First researches are evaluating the IEEE

802.11-2016 standard, see e.g. [17]–[20]. The authors of [17],

[20], [21] are analyzing the round-trip-time (RTT) ranging

accuracy in different environments and with different devices.

In [18], [19] first positioning examples were shown using a

smartphone.

This paper evaluates the WiFi-RTT protocol using a Google

Pixel 3 and Google WiFi APs. We can show clearly the

benefits of using WiFi-RTT distance estimates for positioning.

The WiFi-RTT distance estimation accuracy depends on the

used hardware and also on the signal propagation conditions.

Especially indoors, where WiFi-RTT will mostly be used, the

signal might be blocked, degraded by multipath effects or

received with low power. Hence, the WiFi-RTT measurements
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are expected to be noisy and biased. In order to cope with

the noisy and biased distance estimates, it is essential to

model the WiFi-RTT distance estimation errors. To see the

WiFi-RTT distance estimation accuracy without the influence

of multipath propagation and signal blockage, we evaluated

the WiFi-RTT distance estimation in an antenna measurement

chamber where multipath propagation is suppressed. Similar to

[17], the WiFi-RTT distance estimates are underestimated and

we obtain RTT distance estimations which are lower than the

true distance. In a second measurement campaign, in an indoor

environment, we obtain similar WiFi-RTT distance estimation

errors. Based on the indoor measurements, we model the WiFi-

RTT distance estimation error by a Gaussian mixture model.

This error model is evaluated on measurements in the same

indoor environment, where we use the WiFi-RTT distance

error model in the likelihood function of a particle filter (PF).

The paper is structured as follows. In Section II, we in-

troduce briefly the WiFi FTM protocol of the IEEE 802.11-

2016 standard. Section III evaluates the WiFi-RTT distance

estimates based on two measurement campaigns: in an an-

tenna measurement chamber and in an indoor environment;

additionally, we derive a WiFi-RTT distance estimation error

model. Afterwards, the positioning performance is evaluated

in Section IV. Finally, Section V concludes the paper.

II. WIFI FTM PROTOCOL

The IEEE 802.11-2016 standardizes a FTM protocol that

enables a pair of WiFi devices to estimate the distance between

them. The FTM protocol contains five messages, two are sent

by the initiating device, e.g. a smartphone, and two by the

responding device, e.g. an AP. Fig. 1 shows the details for

the FTM protocol, where a mobile device initiates the FTM

process by sending a FTM request to an AP. An AP that

supports the FTM protocol, responds to the FTM request

either to agree or refuse the ranging process. In the case of

agreement, the AP starts to send a FTM message and waits

for its acknowledgement (ACK) and transmits afterwards the

FTM result. The propagation delay between the mobile device

and the i-th AP can be estimated by

zi(tk) = c · (τ4,i(tk)− τ1,i(tk))− (τ3,i(tk)− τ2,i(tk))

2
, (1)

based on the transmitting timestamp of the FTM message and

the reception timestamp of its ACK, illustrated in Fig. 1. c

denotes the speed of light. The AP may send multiple FTM

messages in a burst for averaging the estimated distances, see

e.g. [17]–[21] for more details.

III. WIFI-RTT MEASUREMENTS

A. Measurements in an antenna measurement chamber

In order to see the accuracy of the FTM protocol, we

performed measurements in an antenna measurement chamber

as shown in Fig. 2. Usually multipath propagation and non-

line-of-sight (NLoS) biases the range estimates. In the antenna

measurement chamber, multipath propagation is kept to a

access point

mobile device

FTM
request

ACKACK FTM
FTM:

τ1,i(tk), τ3,i(tk)

τ1,i(tk)

τ2,i(tk) τ3,i(tk)

τ4,i(tk)

∆τ,1,i(tk)

∆τ,2,i(tk)

Fig. 1: Overview of the WiFi FTM protocol: a mobile device

measures its distance to an AP.

Google Pixel 3

Google Wifi AP

Fig. 2: Measurement campaign in an antenna measurement

chamber.

minimum and only the line-of-sight (LoS) propagation path

should be present.

First, we analyze the WiFi-RTT distance estimation for

the Google Pixel 3 in texting mode, shown in Fig. 2. We

recorded continuously the WiFi-RTT distance estimates for

different distances between the Google Pixel 3 and the Google

WiFi APs. Fig. 7 shows the WiFi-RTT distance estimates as

a function of the true distance in meter. The black dashed

line indicates the true values. We can observe that the system

underestimates the WiFi-RTT distances with about −1.3m.

This is also visible if we look on the distribution of the

WiFi-RTT distance estimation errors, shown in Fig. 4 by the

blue line. The underestimated WiFi-RTT distances could be

caused by internal calibration of the WiFi devices or multipath

compensation algorithms that process the measurements in the

firmware.

To see the influence of the 3D-location of the Google Pixel 3

on the WiFi-RTT distance estimates, we positioned the Google

Pixel 3 on different positions and rotation angles. Fig. 5 shows

the WiFi-RTT distance estimation errors for different turning

angles. The Google Pixel 3 was turned clockwise in steps of

22.5◦. At 0◦ the Google Pixel 3 was facing in the direction

of the AP. Fig. 5a shows the WiFi-RTT distance estimation

errors for the Google Pixel 3 in texting mode. In Fig. 5b the

display is facing up and Fig. 5c the display is facing down.

The WiFi-RTT distance estimation errors are similar to Fig. 7
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Fig. 3: Estimated WiFi-RTT distance in meter as a function

of the true distance, shown in blue. The black dashed line

indicates the true values.

Fig. 4: Distribution of the WiFi-RTT distance estimation errors

in blue. The red line indicates the single Gaussian model.

and Fig. 4, hence, the distances are underestimated in all

different positions also with a mean of µ = −1.3m. Even

if we get an underestimated distance of −1.3m, the WiFi-

RTT distance estimation does not depend on the 3D-location

of the Google Pixel 3. In order to see the WiFi-RTT distance

estimates in multipath environments, we performed additional

measurements in an indoor environment, see Section III-B.

B. Measurements in an indoor environment

To see the WiFi-RTT distance estimation performance in

a multipath environment an indoor measurement campaign

was performed using the Google Pixel 3 smartphone and six

Google WiFi APs. Fig. 6 shows the indoor measurement

scenario in top view with six Google WiFi AP positions

indicated by APi for i = 1, . . . , 6. The Google Pixel 3 was

TABLE I: Statistical parameters of the Gaussian WiFi-RTT

distance estimation error model of (2).

k pk µk σ2
k

1 0.22 0.1795[m] 1.3017[m2]

2 0.78 −0.9503[m] 0.2055[m2]

mounted on a robot which was moving in the area indicated

in gray in Fig. 6. A Vicon motion capture system was used to

obtain the position of the Google Pixel 3. The Vicon motion

capture system is capable to track the motion of the Google

Pixel 3 in the measurement room with an accuracy of less

than 1 cm. Four Google WiFi APs, AP2 - AP5, were placed

in the same room with the Google Pixel 3. During the robot

movement, the LoS path between the Google WiFi AP2-AP5

and the Google Pixel 3 is most of the time present, however

sometimes shaded by furniture. The other two Google WiFi

APs, AP1 and AP6, were placed in the corridor.

Fig. 7 shows the WiFi-RTT distance estimates as a func-

tion of the true distances between the Google Pixel 3 and

the different APs. Equivalently to the measurements in the

antenna measurement chamber, described in Section III-A, the

system underestimates the distances. If we use additionally the

calibration mean error of the antenna measurement chamber

µ = −1.3m as a prior knowledge, we obtain the gray lines in

Fig. 7. We can observe, that the WiFi-RTT distance estimates

are more accurate if µ = −1.3m is added. Fig. 8 shows in blue

the distribution of the WiFi-RTT distance estimation errors.

We can see that the distribution has still a Gaussian shape and

has a negative mean value, however, µ 6= −1.3m.

In order to use the WiFi-RTT distance estimates for posi-

tioning, we have to model the WiFi-RTT distance estimation

errors. As mentioned before, the distribution of Fig. 8 shows

similarity with a Gaussian distribution, but has a larger tail

than a typical Gaussian distribution. One way to model a non-

Gaussian probability density function (PDF) is using a Gaus-

sian mixture model (GMM). A GMM of order K (GMM(K))

is defined as the sum of weighted Gaussian distributions with

f(x) =

K
∑

k=1

pkN (µk, σk) with

K
∑

k=1

pk = 1, (2)

where N (µk, σk) represents a Gaussian distribution with

mean µk and standard deviation σk, weighted by pk for k =
1, ...,K. In general, a GMM can asymptotically represent an

arbitrary shaped PDF. To construct a Gaussian mixture model,

we used the Akaike information criterion (AIC) and Bayesian

information criterion (BIC) to define the number of necessary

Gaussians. Both criteria show, that a Gaussian mixture of two

should be used for this model with the parameters shown in

Table I and indicated in Fig. 8 by the red line. The dotted lines

in Fig. 8 indicate the two individual Gaussian distributions.

The model is different than the model obtained in the antenna

measurement chamber, however, it includes also effects of

multipath propagation and signal blockage.
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(a) Google Pixel 3 - texting mode
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(b) Google Pixel 3 - display facing up

45°

225°
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180°

315°

135°
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(c) Google Pixel 3 - display facing down

Fig. 5: WiFi-RTT distance estimation errors for different mobile positions and rotation angles.

Fig. 6: Indoor measurement environment: The Google Pixel 3

was mounted on a robot which was driving in the area marked

in gray; 6 Google WiFi APs were mounted.

IV. POSITIONING EXAMPLE USING WIFI-RTT

In order to see the positioning performance using the derived

WiFi-RTT distance error model of Section III-B, we performed

three different measurements: robot only; robot and moving

persons; moving person. Details can be found in Table II.

Fig. 9 shows the indoor measurement scenario in top view

with the six AP positions indicated by APi for i = 1, . . . , 6
and the robot track in red and the person track in blue.

Algorithm 1: Sequential importance resampling (SIR)

PF

{x(j)(tk), w
(j)(tk)}Np

j=1 =

SIR
(

{x(j)(tk−1), w
(j)(tk−1)}Np

j=1, z(tk)
)

1 for j = 1 : Np do

2 Draw: x(j)(tk) ∼ p
(

x
(j)(tk)|x(j)(tk−1)

)

;

3 Calculate: w∗(j)(tk) = p
(

z(tk)|x(j)(tk)
)

;

4 Calculate: W (tk) =
∑Np

j=1 w
∗(j)(tk);

5 for j = 1 : Np do

6 Normalize: w(j)(tk) =
w∗(j)(tk)
W (tk)

;

7 Resample see [22]: Obtaining
{

x
(j)(tk), w

(j)(tk)
}Ns

j=1
;

The positioning filter is implemented by a SIR PF, see [22]–

[24]. PFs are based on sequential Monte Carlo methods which

TABLE II: Three different indoor measurements.

Robot - only The robot is moving in the room carry-

ing the Google Pixel 3 in texting mode.

The red line in Fig. 9 shows the ground

truth of the robot movement.

Robot -

moving persons The robot is moving in the room carry-

ing the Google Pixel 3 in texting mode.

The red line in Fig. 9 shows the ground

truth of the robot movement. Addition-

ally, people are moving around in the

room who are influencing the signal

propagation by attenuation, blockage

or diffraction.

Person A person is caring the Google Pixel

3 in texting mode. The blue line in

Fig. 9 shows the ground truth of the

movement of the person.

implement recursive Bayesian filters by Monte Carlo integra-

tion [22], [25]. PFs approximate the probability density of the

state vector x(tk) at time step tk by Np particles with the par-

ticle state vector x(j)(tk) and the normalized weight w(j)(tk).
Algorithm 1 shows a pseudo-code of the SIR PF. From Algo-

rithm 1, we can see that two models have to be implemented

for the SIR PF in order to be used: a state transition model

calculating the transitional prior p
(

x(tk)|x(tk−1)
)

and the

measurement model calculating the likelihood p
(

z(tk)|x(tk)
)

,

where z(tk) =
[

z1(tk) , . . . , zN(tk)(tk)
]T

denotes the WiFi-

RTT distance estimates for i = 1, . . . , N(tk) APs at time step

tk. These two models represent the two major blocks of any

sequential Bayesian filter implementation. We use Np = 3000
particles and a standard random walk transition model. In

the likelihood p
(

z(tk)|x(tk)
)

we use the obtained WiFi-RTT

distance error model. Hence, we obtain for the j-th particle
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(a) AP1 (b) AP2 (c) AP3

(d) AP4 (e) AP5 (f) AP6

Fig. 7: Estimated WiFi-RTT distance in meter as a function of the true distance for all APs. The black dashed line indicates

the true values. If the calibration mean error of the antenna measurement chamber µ = −1.3m is used as a prior knowledge,

the gray lines are obtained.

Fig. 8: Distribution of the WiFi-RTT distance estimation errors

for all APs. The blue line indicates the distribution of the

WiFi-RTT distance estimation errors, the red line indicates

the Gaussian mixture model.

p
(

z(tk)|x(j)(tk)
)

=

N(tk)
∏

i=1

2
∑

k=1

pk
1√
2πσk

e−
(zi(tk)−µk−d

(j)
i

(tk))2

2σ2 , (3)

Fig. 9: Indoor measurement scenarios, where we performed

three different measurements: robot only (red line); robot and

moving persons (red line); moving person (blue line) - see

Table II for details.

with the mean µk and standard deviation σk of Table I and

d
(j)
i (tk) = ‖x(j)(tk)− xAP,i‖ , (4)

where xAP,i denotes the i-th AP position. Because the PF

includes randomness, the position estimates differ for each

evaluation due to a finite number of particles even if the

same measurement data are used. Therefore, we perform 100

independent evaluations based on the same measurement data.

Even if the Google Pixel 3 offers many senor data, the

evaluations use only the WiFi-RTT distance estimates. This

allows to see the positioning performance only based on WiFi-
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TABLE III: Mean µ and standard deviation σ of the absolute

positioning error.

µ /σ

Robot - only: proposed model 0.47 / 0.27

Robot - only: standard model 1.07 / 0.34

Robot - moving persons: proposed model 0.54 / 0.35

Robot - moving persons: standard model 0.96 / 0.43

Person: proposed model 0.93 / 0.88

Person: standard model 1.38 / 0.95

RTT distance estimates. In a real indoor environment, the

density of WiFi APs might not be that dense, hence, other

sensors of the smartphone should be fused to obtain a stable

position solution. This will be a focus for future research.

Fig. 10 shows the cumulative distribution functions (CDFs)

of the positioning error for the three different measurements

using the PF with a standard Gaussian measurement model

(dashed lines) and with the proposed Gaussian mixture mea-

surement model (solid lines). First, we can observe that we

can obtain an accurate position estimate for all measurements.

Especially for the proposed WiFi-RTT distance error model

we obtain for the robot in 92 percent of the cases an error

below 1m even if persons are moving around. In the case of

the moving person, we obtain an error below 1m in 70 percent

of the cases. When a person is walking with the Google Pixel

3 in texting mode, the distance estimates are also affected by

shadowing of the signal by the human body. Finally, Table III

summarizes the mean and standard deviation of the positioning

errors. Please note, the recording application running on the

Google Pixel 3 is re-scanning the WiFi network every 15 s for

5 s. In these 5 s, the Google Pixel 3 can not use the WiFi FTM

protocol and can not estimate the distance to the nearby APs.

Hence, in these 5 s, the particles are only propagated based

on the transition model. Future research, should use in these

situations other sensors of the Google Pixel 3 to obtain better

position estimates.

V. CONCLUSIONS

This paper studies and implements a positioning approach

using the IEEE 802.11-2016 standard. The standard includes

a fine timing measurement (FTM) protocol for WiFi ranging.

The WiFi FTM protocol, more commonly known as WiFi-

round-trip-time (WiFi-RTT) protocol allows to estimate the

distance between two WiFi devices. For our studies, we use

the Google Pixel 3 and Google WiFi access points (APs). First,

we evaluate the WiFi-RTT distance estimates in an antenna

measurement chamber where multipath propagation should be

suppressed. The results show that the round-trip-time (RTT)

distance estimates are lower than the true distance by a

mean of −1.3m. Equivalent results are obtained in an indoor

environment. To obtain better positioning results, a WiFi-

RTT distance error model is derived based on the WiFi-RTT

distance errors of the measurements in the indoor environment.

Fig. 10: CDFs of the Google Pixel 3 positioning error for

the proposed (solid lines) and a standard measurement model

(dashed lines).

For the WiFi-RTT distance error model a Gaussian mixture

model of two is derived and included in the likelihood function

of a particle filter (PF).
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[13] R. Karásek and C. Gentner, “Stochastic Data Association for Multipath
Assisted Positioning Using a Single Transmitter,” IEEE Access, vol. 8,
2020.

[14] Y. Luo, O. Hoeber, and Y. Chen, “Enhancing WiFi Fingerprinting
for Indoor Positioning using Human-Centric Collaborative Feedback,”
Human-centric Computing and Inf. Sciences, vol. 3, no. 1, p. 2, 2013.

[15] P. Bahl and V. N. Padmanabhan, “RADAR: an In-Building RF-Based
User Location and Tracking System,” in Proc. IEEE Conf. on Comp.

Commun. (INFOCOM), vol. 2, 2000, pp. 775–784 vol.2.
[16] “IEEE Standard for Information technologyTelecommunications and

information exchange between systems Local and metropolitan area
networksSpecific requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std

802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534, Dec 2016.
[17] M. Ibrahim, H. Liu, M. Jawahar, V. Nguyen, M. Gruteser, R. Howard,

B. Yu, and F. Bai, “Verification: Accuracy evaluation of WiFi fine time
measurements on an open platform,” in Proceedings of the 24th Annual

International Conference on Mobile Computing and Networking, 2018,
pp. 417–427.

[18] K. Han, S. M. Yu, and S. Kim, “Smartphone-based Indoor Localization
Using Wi-Fi Fine Timing Measurement,” in 2019 International Confer-

ence on Indoor Positioning and Indoor Navigation (IPIN), Sep. 2019,
pp. 1–5.

[19] G. Guo, R. Chen, F. Ye, X. Peng, Z. Liu, and Y. Pan, “Indoor
Smartphone Localization: A Hybrid WiFi RTT-RSS Ranging Approach,”
IEEE Access, vol. 7, pp. 176 767–176 781, 2019.

[20] N. Dvorecki, O. Bar-Shalom, L. Banin, and Y. Amizur, “A Machine
Learning Approach for Wi-Fi RTT Ranging,” 01 2019.

[21] L. Banin, U. Schatzberg, and Y. Amizur, “WiFi FTM and map informa-
tion fusion for accurate positioning,” in 2016 International Conference

on Indoor Positioning and Indoor Navigation (IPIN), 2016.
[22] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial on

Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[23] C. Gentner, S. Zhang, and T. Jost, “Log-PF: Particle Filtering in
Logarithm Domain,” Journal of Electrical and Computer Engineering,
vol. 2018, Jan. 2018.

[24] C. Gentner, T. Jost, W. Wang, S. Zhang, A. Dammann, and U.-C. Fiebig,
“Multipath Assisted Positioning with Simultaneous Localization and
Mapping,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 6104–
6117, Sep. 2016.

[25] N. Gordon, D. Salmond, and A. F. M. Smith, “Novel Approach to
Nonlinear/Non-Gaussian Bayesian State Estimation,” IEE Proc. Radar

Signal Processing, vol. 140, no. 2, pp. 107–113, 1993.

1035

Authorized licensed use limited to: Murdoch University. Downloaded on June 16,2020 at 07:57:48 UTC from IEEE Xplore.  Restrictions apply. 




