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ABSTRACT

In a low angle target parameter estimation scenario, the
backscattered signals from targets are distorted by clutter and
multipath, which degrades the performance of direction-of-
arrival (DOA) estimator significantly. This paper presents
a novel method using time reversal (TR) technique and co-
herent signal-subspace method (CSM) for DOA estimation
in a low angle scenario. The TR method exploits target in-
formation contained in the return echoes due to multipath
and adaptively adjusts TR probing waveforms to increase the
signal-to-noise ratio (SNR). Furthermore, CSM is adopted to
focus the energy of the multipath signal in a predefined sub-
space so as to exploit the full time-bandwidth product of the
target source. We analyze the performance of the proposed
new DOA algorithm. Numerical simulations demonstrate its
superior performance compared with the conventional DOA
estimators.

Index Terms— Direction-of-arrival (DOA), low-angle
scenario, time reversal (TR) technique.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation plays an important
role in array signal processing with wide applications in com-
munication, sonar and radar systems [1]. Generally, DOA
estimators are based on the direct-path-only propagation
observations, in which multipaths are either ignored or con-
sidered detrimental to the performance of the corresponding
DOA estimation. However, most of these methods will not
work well or even fail for low-angle targets in that strong
and rich scattering multipaths make it difficult to extract the
target useful information accurately from measurement data,
thus, reducing DOA estimation accuracy in radar systems.
A natural question rises as what can be gained if we exploit
the additional information contained in multipaths. Recently
Time Reversal (TR) provides a relatively simple method-
ology that enables constructive utilization of multipaths to
adjust the transmitted waveform to the propagation channel
so as to mitigate effects of multipath distortions [2, 3, 4, 5].
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Fig. 1. Geometry of reflection for the TR Localization esti-
mator.

In this paper, we consider a new DOA estimator named
time reversal focusing spatial smoothing MUSIC (TRF-
SSMUSIC) in which the TR technique is adopted to treat the
multipath effect positively. Differing from the conventional
DOA estimators, the proposed TR estimator adopts an extra
TR setup in which case the received backscatter signals from
the target is time-reversed and re-transmitted to probe the
target once again. The subsequent backscattered signals are
then used in our algorithm for DOA estimation. By using TR
technique, the TR probing waveform can inherently match
the propagation channel and refocus at the original source
location to increase the signal-to-noise ratio (SNR) [6]. Con-
sidering that the time reversed signal is typically a wide band
signal in a DOA estimation problem, we utilize the coherent
signal subspace method (CSM) [7] in order to compress the
energy of the time reversed signal in a pre-defined space so as
to exploit the full time-bandwdith product of the target source
and to cope with the coherent wavefronts, thereby, resulting
in a better DOA estimation performance compared with the
conventional DOA estimators. Therefore, the contribution of
the paper is two-fold. First, we develop a new DOA estimator
by combining the TR method and the CSM method to address
the challenging low-angle target DOA estimation. Second,
we conduct numerical simulations to demonstrate the supe-
rior performance of the proposed algorithm compared with
conventional benchmarking algorithms.

2. SIGNAL MODEL

In this section, we introduce the signal model based on the
DOA estimation setup in Fig. 1. Assume the target and
sensor arrays are far enough, thus, a far field approximation
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holds. The probing signal is supposed to be a known complex
bandpass signal f(t)ejwct (wc denotes the angular carrier fre-
quency). Then, the backscatter signal (it is named Forward-
Echo to be different from TR-Echo used later) recorded by
the kth element of the array after down conversion to base-
band and sampling can be expressed as [3, 4, 8]:

rk(t) =

P∑
p=1

Xpf(t− τ(p,1) − δ(k,p)) + vk(t), (1)

where P , Xp, τ(p,1), δ(k,p) and vk(t) denote the number of
paths, attenuation vector, reference delay via path p, interele-
ment delay with path p in excess of τ(p,1) of element k and
noise factor, respectively. Here we assume that the target is
stationary or moving with a relatively slow velocity so that the
Doppler frequency can be omitted. In the frequency domain,
(1) can be written as

Rk(ω) =

P∑
p=1

XpF(ω)e−jωτ(p,1)e−jωδ(k,p) + Vk(ω). (2)

Considering all of the M elements of the array and using (1),
Forward-Echo y(t) can be given by

y(t) = [r1(t), r2(t), · · · , rk(t), · · · , rM (t)]T . (3)

Then the frequency form y(ω) can be expressed as

y(ω) = [R1(ω), R2(ω), · · · , Rk(ω), · · · , RM (ω)]T

= A (Θ) Xγ (ω) F (ω) +V (ω).
(4)

In (4), A(Θ) is the steering vector matrix given by

a(θp) = [1, · · · , e−jΩksinθp , e−jΩP−1sinθp ]T

A(Θ) = [a(θ1), · · · , a(θP )],with Ωk = kωd/c,
(5)

where θp(p = 1, 2, · · · , P ) denotes the angle of the multipath
p. X is the attenuation matrix given by X = diag[X1, · · · ,XP ],
and γ(ω) = [e−jωτ(1,1) , · · · , e−jωτ(P,1) ]T representing the
reference delay vector. V(ω) is the noise vector constructed
by V(ω) = [V1(ω), · · · ,VM (ω)]T . The operation diag[X]
represents a square matrix with elements of X on the main
diagonal.

Now we derive the TR-Echo from Forward-Echo pre-
sented in (4). Firstly, we review the TR technique briefly.
The Forward-Echo (i.e., y(ω)) is digitized, energy normal-
ized, time-reversed (equivalent to phase conjugation in the
frequency domain), and retransmitted to the propagating
medium and then backscattered to the ULA sensors again.
Note that the propagation environment is supposed to be the
same as that in the forward probing step and the reciprocity
condition holds. Then, we can get observations in the TR
probing step called TR-Echo yTR(ω) on the base of (4).

yTR(ω) =

M∑
m=1

A (Θ) Xγ (ω) zm (ω) +ζ (ω) , (6)

where zm (ω) refers to the mth entry of z(ω) while vector
z (ω) = gy∗(ω) denotes the TR probing signal. ζ (ω) denotes
the noise brought in by the TR probing process and g is the
energy normalization factor which can be computed by

g =
√

(‖F(ω)‖2)/(‖y(ω)‖2), (7)

Similar to (4), (6) can be expressed in the matrix format as

yTR(ω) = ATR(Θ)XTRΓTR(ω)ZTR (ω) +ζ(ω). (8)

In (8), the block matrix ATR(Θ) is of order (M × MP ),
while XTR is a square matrix with dimensions of (MP ×
MP ). Symbol 1M refers to a row vector of dimension M
with all entries equal to 1. Specific meanings of them are
defined as follows

ATR(Θ) = [A(Θ)|A(Θ)| · · · |A(Θ)] ,

ΓTR(ω) = IM ⊗ diag[γ(ω)],XTR = IM ⊗X,

ZTR(ω) =
[
z1(ω)1M , · · · , zM (ω)1M

]T
,

(9)

where ⊗ represents Kronecker product.

3. THE PROPOSED TRF-SSMUSIC ALGORITHM

This section presents the TRF-SSMUSIC algorithm on the
base of CSM method (Two-side Correlation Transforma-
tion (TCT) [9] is taken to execute the focusing process) and
spatial-smoothing multiple signal classification (SS-MUSIC)
[10, 11] from the derived TR-Echo in (8). Firstly, yTR(ω)
is divided into Q equally spaced frequency bins. The ar-
ray output vector for a fixed frequency ωq is denoted as
yTR(ωq), then, the corresponding covariance matrix at the
qth frequency bin can be written as

<TRy (ωq) = E
{

yTR(ωq)(yTR(ωq))
H
}
, (10)

where E represents expectation operator.
The CSM method algorithm mainly transforms the sig-

nal subspaces and overlaps them in a predefined subspace:
so-called focusing space. The problem turns into finding
the transforming matrices which we denote as Tq(ωq)(q =
1, 2, . . . , Q). In particular, TCT takes advantage of the co-
variance matrix at the each frequency bin to compute the
transforming matrices so as to obtain the focusing covariance
matrix <TRy (ωq). From [12, 13], we know that the transform-
ing matrices Tq(ωq) are the solutions of the equation:

Tq(ωq)<TRy (ωq)T
H
q (ωq) = <TRy (ω0), (11)

where ω0 is the frequency of the focusing space. To solve
(11), we convert (10) to a constrained minimization problem

min
Tq(ωq)

∥∥<TRy (ω0)−Tq(ωq)<TRy (ωq)T
H
q (ωq)

∥∥
F
,

s.t. Tq(ωq)
HTq(ωq) = I,

(12)
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for q = 1, 2, . . . , Q. In (12), symbol ‖ · ‖ is the Frobenius
norm. Then we can get the transforming matrices Tq(ωq) at
frequency bin ωq as

Tq(ωq) = U(ω0)UH(ωq), (13)

where U(ω0) and UH(ωq) respectively denote the eigenma-
trices constructed by eigenvectors of <TRy (ω0) and <TRy (ωq).
Evidently, frequency of the focusing space ω0 and corre-
sponding covariance matrix <TRy (ω0) play important roles
in the TCT focusing method. For notation simplicity, we
suppress the frequency variable representing Tq(ωq) by Tq ,
<TRy (ωq) by <TRy (q) and so on. Next, we consider how to
determine ω0. Taking the focusing error into consideration,
(12) can be further replaced by

ε = min
ω0

min
Tq

∥∥<TRy (0)−Tq<TRy (q)TH
q

∥∥2
,

s.t. TH
q Tq = I, q = 1, 2, . . . , Q,

. (14)

where ε represents the focusing error of all frequency bins.
From (14), when <TRy (0) is fixed, ε can be reformulated as

ε =

Q∑
q=1

[
‖<TRy (0)‖2 + ‖<TRy (q)‖2

−2

P∑
p=1

σp(<TRy (0))σp(<TRy (q))

]
,

(15)

where σp(<TRy (0)) and σp(<TRy (q)) represent the singular
value of matrix <TRy (0), respectively. <TRy (q) and P is the
number of non-zero singular value of them. In (13), <TRy (q)
is not related to the focusing frequency ω0, then, (15) can be
modified as (16) with simple mathematical computation.

min
ω0

P∑
p=1

[
Qσ2

p(<TRy (0))− 2σp(<TRy (0))

Q∑
q=1

σp(<TRy (q))

]
,

(16)

The solution to (15) is given as follows (see also [12]),

σp(<TRy (0)) =
1

Q

Q∑
q=1

σp(<TRy (q)), p = 1, 2, . . . , P. (17)

Evidently, (17) is the theoretical value of σp(<TRy (0)) which
cannot be obtained for the reason that the number of fre-
quency bins is limited. Therefore, replace (17) by the fol-
lowing as an approximation.

min
ω0

P∑
p=1

∣∣∣∣σp(<TRy (0))− µp
Q

∣∣∣∣2 with µp =

Q∑
q=1

σp(<TRy (q)),

(18)
Equation (18) is is a one-variable optimization problem, and
a search procedure can be applied to find the minimum point

Table 1. Parameters Used in the Monte Carlo Simulations

2-path
Direction of arrival {2◦,−2◦}

Time delays { 0,2.3}ns
Attenuation factors {1,

√
1/2}

3-path
Direction of arrival {2◦,−2◦,−10◦}

Time delays { 0,2.3,11}ns
Attenuation factors {1,

√
1/2,

√
1/2}

4-path
Direction of arrival {2◦,−2◦,−10◦,−20◦}

Time delays { 0,2.3,11,22}ns
Attenuation factors {1,

√
1/2,

√
1/2,

√
1/2}

so as to obtain the focusing frequency ω0 conveniently. Us-
ing (18) to get the focusing frequency ω0 and (13) to acquire
transforming matrices Tq at each frequency bin ωq , we can
obtain the focusing covariance matrix <TRy (ω0) by

<TRy (ω0) =
1

Q

Q∑
q=1

Tq<TRy (q)TH
q . (19)

Then SS-MUSIC algorithm can be applied on the base of (19)
for DOA estimations.

4. NUMERICAL SIMULATIONS

In this section we conduct experiments to evaluate the DOA
estimation performance using the TRF-SSMUSIC algorithm
described in Section 2 and Section 3. We start by describing
the parameters used in our simulations in Table 1. Two ex-
periments are conducted to verify the proposed algorithm: i)
the spatial spectra; ii) root mean squares errors (RMSE) with
respect to different SNRs by the Monte Carlo simulations.

We assume a ULA consisting of M = 16 isotropic ele-
ments with interelement sensor space d = λ0 with λ0 = c/fc,
where fc is the carrier frequency and c is is the propagation
speed of the probing signal. Besides, the probing signal is as-
sumed as a pulse with linear frequency modulation (LFM),
i.e. f(t) = f̂(t)ejwct where the angular carrier frequency
ωc = 2πfc and the relative bandwidth is 0.1. The number
of frequency bins Q is set to be 1000 (it is noted that Q has
to satisfy the sampling theorem in frequency domain so as to
maintain the integrity of the signal. To be more specifically,
Q ≥ τ0 · B, see [13] for more details), which is a reason-
able value for our 2-path, 3-path and 4-path propagation envi-
ronments discussed below. For all of the three scenarios, the
pseudospectra are plotted in Fig. 2 and performance curves in
terms of RMSE versus SNRs in Fig. 3.

4.1. Spatial spectra

In this part, the simulations are based on the radar experimen-
tal setup shown in Fig. 1 with the corresponding parameters
defined in Table 1. SNRs for all of the three propagation
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Fig. 2. Spectra of the four different algorithms in different propagation models: (a)2-path; (b)3-path; (c)4-path.
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Fig. 3. RMSE against SNR of four different algorithms in different propagation models: (a) 2-path; (b) 3-path; (c) 4-path.

models in Fig. 2 are fixed at -5 dB. For easy reference, in Fig.
2, we plot several vertical dashed lines to denote the actual
DOAs. Fig. 2 indicates that in all of the three scenarios, our
proposed TRF-SSMUSIC algorithm can accurately estimate
the DOAs of corresponding targets while other three algo-
rithms (conventional spatial smoothing Capon (C-SSCapon)
[3], time reversal spatial smoothing Capon (TR-SSCapon)
[3], conventional focusing spatial smoothing MUSIC (CF-
SSMUSIC)) cannot distinguish closely located targets in
some conditions. Both C-SSCapon and TR-SSCapon use
incoherent signal-subspace signal method (ISM [14]) to deal
with the wide-band received signal. Since ISM ignores the
frequency difference between every frequency bin, the per-
formances of them degrades in some extent. Compared with
CF-SSMUSIC, TRF-SSMUSIC has higher SNR and larger
virtual aperture by taking time reversal technique, thus en-
hancing its DOA accuracy. Resolution of TRF-SSMUSIC
algorithm is the best among all of the four algorithms for it
has much narrower peaks in (or close to, more practically)
the true DOA angles and much lower sidelobes.

4.2. RMSE versus SNR

Fig. 3 shows that RMSE for our proposed TRF-SSMUSIC
algorithm has lower values than other three algorithms, that
is it improves the DOA precision in a certain degree. To be

more specifically, in Fig. 3(a), when the RMSE is 0.5◦, the
corresponding SNRs are -5 dB, 0 dB, 7 dB, 10 dB for the four
algorithms, respectively. It indicates the outperformance of
TRF-SSMUSIC algorithm from another aspect.

5. CONCLUSION

In this paper, a novel time reversed based DOA estimation
method is proposed for low angle target scenario. TR tech-
nique and CSM method are integrated and applied to produce
a new DOA estimation method. We show that matching the
transmitted signal to the multipath propagation channel by
TR technique improves the DOA estimation accuracy. The
CSM method can accurately locate closely separated targets.
In our simulations, we observe that the proposed algorithm
outperforms other three conventional methods in estimation
accuracy resolution and exhibits lower RMSE for a variety
of SNRs. We assume time reversal waveform matches the
propagation channel perfectly in this paper. In reality, how-
ever, many factors such as the noise, propagating medium and
so on will lead to channel estimation errors and degrade the
DOA estimation performance. Hence, further study of corre-
sponding DOA estimation methods when existing phase error
or channel mismatch remains an open research problem.
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