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Spectral Analysis of Nonuniformly Sampled Data:
A New Approach Versus the Periodogram

Petre Stoica, Fellow, IEEE, Jian Li, Fellow, IEEE, and Hao He, Student Member, IEEE

Abstract—We begin by revisiting the periodogram to explain
why arguably the plain least-squares periodogram (LSP) is prefer-
able to the “classical” Fourier periodogram, from a data-fitting
viewpoint, as well as to the frequently-used form of LSP due to
Lomb and Scargle, from a computational standpoint. Then we
go on to introduce a new enhanced method for spectral analysis
of nonuniformly sampled data sequences. The new method can
be interpreted as an iteratively weighted LSP that makes use of
a data-dependent weighting matrix built from the most recent
spectral estimate. Because this method is derived for the case
of real-valued data (which is typically more complicated to deal
with in spectral analysis than the complex-valued data case), it
is iterative and it makes use of an adaptive (i.e., data-dependent)
weighting, we refer to it as the real-valued iterative adaptive
approach (RIAA). LSP and RIAA are nonparametric methods
that can be used for the spectral analysis of general data sequences
with both continuous and discrete spectra. However, they are most
suitable for data sequences with discrete spectra (i.e., sinusoidal
data), which is the case we emphasize in this paper.

Index Terms—BIC, iterative adaptive approach, least-squares
method, nonuniformly sampled data, periodogram, spectral
analysis.

I. INTRODUCTORY DISCUSSION AND THE PERIODOGRAM

A. The Data

L ET denote the sequence of observations
whose spectral analysis is our main goal. We as-

sume that the observation times are given, that
, and that a possible nonzero mean

has been removed from , so that .
We will also assume throughout this paper that the data se-
quence consists of a finite number of sinusoidal components
and of noise, which is a case of interest in many applications.
Note that, while this assumption is not strictly necessary for
the nonparametric spectral analysis methods discussed in this
paper, these methods perform most satisfactorily when it is
satisfied.
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B. The Fourier Periodogram

The “classical” Fourier transform-based periodogram (FP)
associated with is given by

(1)

where is the frequency variable and where, depending on the
application, the normalization factor might be different from

(such as , see, e.g., [1] and [2]). It can be readily
verified that can be obtained from the solution to the fol-
lowing least-squares (LS) data fitting problem:

(2)

Because , the LS criterion above can be

rewritten as (below )

(3)

Minimization of the first term in (3) makes sense, given the si-
nusoidal data assumption made previously. However, the same
cannot be said about the second term in (3), which has no data
fitting interpretation and hence only acts as an additive data-in-
dependent perturbation on the first term.

C. The LS Periodogram

It follows from the discussion in the previous subsection that
in the case of real-valued (sinusoidal) data, considered in this
paper, the use of FP is not completely suitable, and that a more
satisfactory spectral estimate should be obtained by solving the
following LS fitting problem:

(4)

(we omit the dependence of and on , for notational sim-
plicity). Using

and (5)
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we can reparameterize the LS criterion in terms of and :

(6)

The solution to the minimization problem in (6) is well known
to be

(7)

where

(8)

and

(9)

The power of the sinusoidal component with frequency , cor-
responding to , is given by

(10)

The LS periodogram is accordingly given by

(11)

(where we have reinstated the dependence on , for clarity).
The LSP has been discussed, for example, in [3]–[8], under

different forms and including various generalized versions. In
particular, the papers [6] and [8] introduced a special case of
LSP that has received significant attention in the subsequent lit-
erature. To describe this special instance of LSP, let us reparam-
eterize (4) as follows:

(12)

where is chosen as the solution to the equation

(13)

( can be obtained in an explicit form, see [6] and [8]). Repa-
rameterizing (12) in terms of and ,
and making use of (13), we obtain (similarity to (7))

(14)

where

(15)

and

(16)

The power of the sinusoidal component with frequency ,

corresponding to and above, of course is identical to
that associated with and in (7) (i.e., it is given by (11)),
as the best LS sinusoidal fit to the data is unique. Then the
question is whether the form of LSP obtained from (14), i.e.,

, is preferable to the plain LSP in
(11) on computational or any other grounds.

In the words of [6], for numerical work it is simpler to use
(7) than (14). We basically agree, as we briefly explain next.
Equation (7) requires the inversion of a 2 2 matrix, whereas
this is not needed in (14) where the matrix is diagonal; however,
(14) requires the computation of (note that depends on ),
which may be slightly trickier than the inversion of the matrix
in (7). More importantly, the elements of the vector in (7)
are equal to the real and imaginary parts of .
There are fast algorithms, similar to the FFT, termed nonuniform
FFT (NFFT) that can be used to compute the latter quantity and
therefore the vector (see, e.g., [9]–[11]). The same algorithms
can be used to evaluate the vector appearing in (14), which is
given by the real and imaginary parts of

(17)

but at a computational cost a bit larger than that required for .
To conclude this point, (7) may indeed be slightly more prefer-
able than (14) from a computational standpoint (despite the fact
that (14) avoids the 2 2 matrix inversion operation).

The suggestion in both [6] and [8] was that, again in the words
of [6], the use of (14) would facilitate the statistical description
of the LSP. We do not find this suggestion to be justified. Indeed,
the statistical analysis in either [6] or [8], which used (14) to
show that (i.e., that is distributed
as a chi-square random variable with 2 degrees of freedom)
under the assumption that is a normal white noise
sequence with unit variance, is not simpler than the following
proof of the same result based on (7). To prove the result under
discussion, first observe that under the assumption made on

, the vector is normally distributed with mean zero
and covariance matrix equal to : . This observa-
tion implies that (here is a symmetric square root of

)

(18)
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from which it follows at once that

(19)

(for any given , and under the normal white data assumption).
In view of the above arguments, we tend to recommend the

use of the plain LSP in lieu of its version in [6] and [8]; this is
in contrast to what has been usually done so far in the literature
where the latter periodogram was favored on unclear grounds,
sometimes even missing the fact that the final result is the same
as that obtained with the plain LSP.

D. Spectral Window and Frequency Range

Consider a sinusoidal component with frequency , different
from , that might be present in the data:

(20)

(if no such component exists in the data, then ). The
effect of (20) on the LS estimate in (7) is to introduce an error
term, or leakage, given by

(21)

In general, (21) is a function of both and that is relatively
difficult to deal with. To simplify, we make use of the fact that,
asymptotically in and for “nonpathological” sampling pat-
terns (see the Appendix for an explanation of this terminology)

(22)

and

(23)

Next, assuming that and are not both very close to zero, we
have that , which implies that

(24)

and

(25)

The right-hand side in the above two equations can be further
approximated as

(26)

Inserting (24)–(26) into (23) leads to the following approxima-
tion of the error term in (21):

(27)

We can express the “size” of this error as the squared Euclidean
norm of the vector in (27):

(28)

where . As might have been expected,
(28) is the same as the error term that would be caused by a
complex sinusoid, , on the Fourier periodogram
in (1) evaluated at . By analogy with the uniformly sampled
data case, the part of (28) that depends on the sampling pattern,
written as a function of a single frequency variable viz.

(29)

is called the spectral window (as a quick motivation for this
name, note that above is proportional to the squared
magnitude of the Fourier transform of the sampling window

).
Next we discuss, following [12], the use of the spectral

window to define the maximum frequency interval, let us say
, that can be dealt with unambiguously, for a given set

of sampling times . The spectral window attains its max-
imum value of at : . We
evaluate for to find the smallest frequency value,
let us say , at which the spectral window has a peak whose
height is close to (if we cannot find any such peak even for

, then we set ). Theoretically, we should consider
. However, in applications with relatively low

signal-to-noise ratios, we may choose , perhaps
even as low as . In any case, once was computed, then
the claim is that

(30)

should be the largest frequency of the data sequence in question.
To motivate this claim, we must verify that no aliasing can take
place if and only if (30) is satisfied. However, this follows easily
from the fact that if (30) is true, then for any

; and that if (30) does not hold, then
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the frequency , for any , is
aliased as .

Note that often in the literature, is chosen as
or as . As noted

in [12], in (30) is typically much larger than either of
these choices.

Regarding the smallest frequency separation that can be
safely detected, let us say , this can be approximated by the
requirement that

for (31)

For nonpathological sampling patterns we typically have, with
a reasonable approximation

(32)

Because above is essentially the resolution limit of the LSP,
we may want to evaluate the periodogram function on a grid
with a step (much) smaller than (32), such as .

II. CONTRIBUTIONS AND OUTLOOK

As is well known, the spectral estimates obtained with either
FP or LSP suffer from both local and global (or distant) leakage
problems. Local leakage is due to the width of the main beam
of the spectral window, and it is what limits the resolution capa-
bility of the periodogram. Global leakage is due to the sidelobes
of the spectral window, and is what causes spurious peaks to
occur (which leads to “false alarms”) and small peaks to drown
in the leakage from large peaks (which leads to “misses”).

Additionally, there is no satisfactory procedure for testing the
significance of the periodogram peaks. In the uniformly sam-
pled data case, there is a relatively well-established test for the
significance of the most dominant peak of the periodogram; see
[1], [2], and [13] and the references therein. In the nonuniformly
sampled data case, [8] (see also [14] for a more recent account)
has proposed a test that mimics the uniform data case test men-
tioned above. However, it appears that the said test is not readily
applicable to the nonuniform data case; see [13] and the refer-
ences therein. As a matter of fact, even if the test were appli-
cable, it would only be able to decide whether are white
noise samples, and not whether the data sequence contains one
or several sinusoidal components (we remark in passing on the
fact that, even in the uniform data case, testing the existence
of multiple sinusoidal components, i.e., the significance of the
second largest peak of the periodogram, and so forth, is rather
intricate [1], [2]). The only way of correcting the test, to make
it applicable to nonuniform data, appears to be via Monte Carlo
simulations, which may be a rather computationally intensive
task (see the lucid discussion in [13] on this aspect).

The main contribution of the present paper is the introduc-
tion of a new method for spectral estimation and detection in the
nonuniformly sampled data case, that does not suffer from the
above drawbacks of the periodogram (i.e., poor resolution due
to local leakage through the mainlobe of the spectral window,
significant global leakage through the sidelobes, and lack of sat-
isfactory tests for the significance of the dominant peaks). A pre-
view of what the paper contains is as follows.

• The amplitude and phase estimation (APES) method, pro-
posed in [15] for uniformly sampled data, has significantly
less leakage (both local and global) than the periodogram.
We follow here the ideas in [16]–[18] to extend APES to
the nonuniformly sampled data case. The so-obtained gen-
eralized method is referred to as RIAA for reasons ex-
plained in the Abstract.

• Both LSP and RIAA provide nonparametric spectral es-
timates in the form of an estimated amplitude spectrum
(or periodogram ). We use the frequencies and am-
plitudes corresponding to the dominant peaks of
(first the largest one, then the second largest, and so on)
in a Bayesian information criterion (BIC), see, e.g., [19]
and the references therein, to decide which peaks we
should retain and which ones we can discard. The com-
bined methods, viz. LSP BIC and RIAA BIC, provide
parametric spectral estimates in the form of a number of
estimated sinusoidal components that are deemed to fit the
data well. Therefore, the use of BIC in the outlined manner
not only bypasses the need for testing the significance
of the periodogram peaks in the manner of [8] (which
would be an intractable problem for RIAA, and almost an
intractable one for LSP as well—see [13]), but it also pro-
vides additional information in the form of an estimated
number of sinusoidal components, which no periodogram
test of the type discussed in the cited references can really
provide.

• Finally, we present a method for designing an optimal sam-
pling pattern that minimizes an objective function based
on the spectral window. In doing so, we assume that a
sufficient number of observations are already available,
from which we can get a reasonably accurate spectral esti-
mate. We make use of this spectral estimate to design the
sampling times when future measurements should be per-
formed. The literature is relatively scarce in papers that ap-
proach the sampling pattern design problem (see, e.g., [8]
and [20]). One reason for this may be that, as explained
later on, spectral window-based criteria are relatively in-
sensitive to the sampling pattern, unless prior information
(such as a spectral estimate) is assumed to be available—as
in this paper. Another reason may be the fact that measure-
ment plans might be difficult to realize in some applica-
tions, due to factors that are beyond the control of the ex-
perimenter. However, this is not a serious problem for the
sampling pattern design strategy proposed here which is
flexible enough to tackle cases with missed measurements
by revising the measurement plan on the fly.

III. RIAA AND BIC

A. RIAA

Let denote the step size of the grid considered for the fre-
quency variable, see (32) and the subsequent comment, and let

denote the number of the grid points needed
to cover the frequency interval , where denotes the
largest integer less than or equal to ; also, let

(33)
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The uniform frequency grid in (33) will be the one used in most
applications, and this is why we have mentioned it here, but
we should stress that the spectral analysis methods discussed in
this paper can be used with any type of frequency grid without
any conceptual modification (only the implementation code will
depend on whether the grid is uniform or nonuniform).

The following additional notation will be needed as well in
this section:

...

...
... (34)

Using this notation, we can rewrite the LS fitting criterion in (6)
in the following vector form (for ):

(35)

where denotes the Euclidean norm. The LS estimate of
in (7) can be rewritten as

(36)

Besides a possible sinusoidal component with frequency , as
considered in (35), the data might contain other sinusoidal
components with frequencies different from , as well as
noise. Regarding the latter, we do not consider a noise compo-
nent of explicitly, but rather implicitly via its contributions
to the data spectrum at ; for typical values of the
signal-to-noise ratio, these noise contributions to the spectrum
are comparatively small. Let us define

(37)

which can be thought of as the covariance matrix of the other
possible components in , besides the sinusoidal component
with frequency considered in (35).

Remark: In some applications, the covariance matrix of the
noise component of is known (or, rather, can be assumed with
a good approximation) to be

...
. . .

... with given (38)

In such cases, we can simply add to the matrix in (37).

Assuming that is available, and that it is invertible, it
would make sense to consider the following weighted LS (WLS)
criterion, instead of (35),

(39)

Indeed, it is well known that the estimate of obtained by min-
imizing (39) is more accurate, under quite general conditions,
than the LS estimate obtained from (35). Note that a necessary
condition for to exist is that , which is easily
satisfied in general.

The vector that minimizes (39) is given by

(40)

Similarly to (10), the WLS periodogram, corresponding to (40),
can be defined as

(41)

The WLS estimate in (40) appears to require the inversion of
an matrix , for each value of . For

, this would be computationally a rather intensive task.
To show how we can simply reduce the computational com-
plexity of (40), let us introduce the matrix

(42)

A simple calculation shows that

(43)

To verify this equation, premultiply it with the in (42) and
observe that

(44)

Inserting (43) into (40) yields the following alternative expres-
sion for the WLS estimate:

(45)

which is computationally more appealing than (40), as in
(45) needs to be computed only once for all values of

.
Next, we explain how to circumvent the problem that in

(45) depends on the very quantities that we want to estimate,
viz. the , and consequently that cannot be imple-
mented directly. The only apparent solution to this problem is
some form of iterative process, for example the RIAA algo-
rithm, containing equations (46) and (47), outlined in Table I.

In most applications, the RIAA algorithm is expected to re-
quire no more than 10–20 iterations (see, e.g., the numerical ex-
amples in Section V).

Note that we might think of replacing in (46) by

(48)

which makes use not only of the th iteration estimates of
but also of the th iteration estimates as they become avail-
able. However, the estimate of in (48) depends on (as indi-
cated by notation), which would complicate the computation of

: indeed, while the matrix inversion lemma could be used
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TABLE I
THE RIAA ALGORITHM

to compute from , the computation cost
compared with that of (46) would increase, and this without any
guarantee for better performance. Consequently, we will use the
RIAA with the simpler estimate of in (46).

B. RIAA and APES

In what follows, we make use of the analogy between RIAA
and the amplitude and phase estimate (APES) periodogram (see,
e.g., [15] and [21]) to provide some additional insights into the
expected behavior of RIAA. In particular, we use this analogy
to explain intuitively why RIAA is expected to have less (both
local and global) leakage than LSP.

We begin by noting that there is an essential difference
between RIAA and APES: the latter uses an estimate of the
residual matrix obtained from multiple realizations of the
data vector , whereas RIAA estimates using a theoretical
formula for this matrix, along with the most recent spectral
estimate available; note that in the spectral analysis problem
considered in this paper, we dispose of only one realization of

, so APES would not be applicable directly. However, once
this difference is realized (as well as the fact that APES was
derived in [15] and [21] for complex-valued data, whereas
RIAA assumes real-valued data, which complicates its for-
mulas to some extent), (40) used by RIAA to estimate looks
similar to the corresponding equation of APES (see [15] and
[21]). The implication of this observation is that we should be
able to obtain the estimate in (40) in the manner in which the
APES estimate is usually derived (see the cited papers). To
describe this alternative manner, let denote an matrix
that is the solution to the following constrained minimization
problem:

(49)

(50)

where is a monotonically increasing function on the domain
of positive definite matrices (which means that , i.e.,
the difference matrix is positive semi-definite, implies

), for example the trace or the determinant. We
use , in the manner of APES, to obtain an estimate of as

(51)

To prove the equivalence between (51) and (40), we need to
show that the solution to (49) is given by

(52)

or, equivalently, that

(53)

for any that satisfies the constraint in (50). Using the fact
that , we can write (53) in the following form:

(54)

which is equivalent (by standard Schur complement results, see,
e.g., [2]) to

(55)

and therefore to

(56)

Because the matrix in the left-hand side of (56) is evidently pos-
itive semi-definite, the proof that (52) is the solution to (49), and
therefore that in (51) coincides with the WLS estimate of ,
is concluded.

Remark: Making use of the constraint, we can reformulate
the minimization problem in (49) as

(57)

(58)

whose solution, viz.

(59)

must coincide with (52). This observation provides another
proof of the equivalence between the WLS estimates in (40)
and (45).

The intuition afforded by the above APES-like derivation of
WLS is interesting. The matrix that solves the optimiza-
tion problem in (49) can be viewed as a “filter” that passes the
sinusoidal component of current interest (with frequency )
without any distortion (by (50)) and attenuates all the other com-
ponents in as much as possible (by (49)). To illustrate the latter
property of , we use the fact that, by assumption, the data
contains a finite (usually small) number of sinusoidal compo-
nents. This means that there are only a limited number of fre-
quencies which contribute significant terms to . Let be

dell
高亮

dell
标注
行列式

dell
高亮

dell
标注
一致

dell
高亮

dell
标注
直觉



STOICA et al.: SPECTRAL ANALYSIS OF NONUNIFORMLY SAMPLED DATA 849

one of these frequencies. Then, in view of (49), should be
nearly orthogonal to , i.e., , which means that
acts as an annihilating filter for any strong sinusoidal component
in whose frequency is different from . This observation ex-
plains why RIAA can be expected to have significantly reduced
leakage problems compared with LSP: note that the “filtering”
matrix used by LSP, viz. , is data-independent
and as such it cannot eliminate the sinusoidal components in ,
with frequencies different from , as well as does.

C. LSP BIC and RIAA BIC

As already mentioned in the previous section, the use of the
standard -test (borrowed from the uniform data case, see [1],
[2] and the references therein) to decide whether or not the most
dominant peak of LSP is significant, as suggested in [8], faces
a number of problems in the nonuniformly sampled data case.
First, in the latter case, the test is in general invalid (see, e.g.,
[13]). Second, and more important in our opinion, even in the
uniformly sampled data case the test can hardly be used to de-
cide if there are sinusoidal components in the data (and, if yes,
how many of them), but rather only to check whether or not the
data consist of white noise alone. An additional problem is that
for RIAA the distribution of the corresponding spectral estimate
is unknown (even in the uniform data case) and hence a -type
of test would not be applicable even approximately.

The BIC rule is an alternative to standard statistical tests of
hypothesis testing, such as the test discussed above, which
can be used in the problem of interest here, albeit in an approx-
imate manner (see below for details). To explain how this can
be done, we let denote the values taken by either
the LSP or the RIAA periodogram at the points of the frequency
grid, and let

(60)

denote the frequencies and the amplitude and phase related pa-
rameters corresponding to the largest peaks of ,
arranged in a decreasing order of their associated periodogram
values:

(61)

for . Under the idealizing assumptions that the data se-
quence consists of a finite number of sinusoidal components and
of normal white noise, and that are the max-
imum likelihood (ML) estimates of the frequencies and the am-
plitude and phase related parameters of such sinusoidal com-
ponents, the BIC rule estimates as follows:

(62)

where

(63)

and where

(64)

(see, e.g., [2] and [19] and the references therein). Note that BIC
is made of two terms: a LS data fitting term that decreases as
increases, and a complexity penalization term which increases
with increasing ; therefore, the BIC estimate of , i.e.,
in (62), is obtained by a tradeoff between in-sample fitting ac-
curacy and complexity of the sinusoidal data description. Also
note that if is selected then, according to BIC, the data
consist of only white noise.

In applications, the idealizing assumptions made above do not
hold exactly. Indeed, usually the noise in the data is not white
and normally distributed. Moreover, the ob-
tained from the peaks of the periodogram are not ML estimates
(unless and the noise is white and normal). Despite
these problems, BIC can still be used for estimating (i.e.,
essentially for testing the significance of the peaks of LSP or
RIAA periodogram), albeit only in an approximate manner, as
explained next.

It follows from the derivation of BIC (see, e.g., the cited
works) that the large complexity penalty corresponding to the

in (64) is mainly due to the high accuracy of the ML esti-
mates. Clearly, as increases, the probability of “false alarms”
decreases, whereas the probability of “misses” increases; an ac-
curate estimation method, such as the ML, should allow a de-
tection rule to operate at quite a small probability of false alarm
without more than an insignificant increase in the probability of
miss—this explains intuitively why the value of in BIC, cor-
responding to the ML, is relatively high.

By comparison, the frequencies and amplitude and phase re-
lated parameters estimated with RIAA and LSP are expected
to be less accurate and, respectively, significantly less accurate
than the ML estimates. Consequently, we suggest the use of BIC
with smaller values of in the case of LSP and RIAA than the

used in the case of ML, namely

and (65)

Admittedly, these choices are somewhat ad-hoc, but the corre-
sponding BIC rules are simple to use and they appear to provide
accurate estimates of (see Section V for details).

IV. SAMPLING PATTERN DESIGN

We consider the following situation: the data samples
have already been collected, and a spectral es-

timate, , has been obtained based on them; we
want to choose the sampling times for future measurements,

, in an optimal manner according to some objective
function. Let denote a set of possible times when
future measurements of could in principle be performed.
Naturally, we assume that and that

(66)

Note that any known constraints on the set of possible future
sampling times, such as black out dates and the like, can be taken
into account by properly selecting .
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The discussion in the previous sections (see also [20]) has
evidenced quite clearly the fact that the performance of LSP de-
pends, to a large extent, on the shape of the spectral window (its
mainlobe width and sidelobe heights), and so does the perfor-
mance of RIAA, but to a smaller extent. Consequently, a spectral
window-based function should be a logical choice of an objec-
tive to optimize with respect to .

The spectral window corresponding to the set of past
sampling times and possible future sampling times

is given by (see (29))

(67)

and the integrated spectral window by

(68)

We might think of minimizing (68) with respect to
. Furthermore, because (68) does not depend on

any prior information, we might even think of minimizing (68)
with respect to for (in which case we would
design the entire set of sampling times). However, doing so is
not advisable. The reason is that the integrated spectral window
is rather insensitive to the choice of . To see why this is so,
observe that (68) is the discrete approximation of the following
integral function (to within a multiplication constant):

(69)

where denotes the conjugate transpose, and

...

...

...

(70)

For nonpathological choices of and

(71)

so that (69), and therefore (68), is approximately constant. This
observation extends the well-known fact that in the uniform
sampling case the integrated spectral window is constant (a fact
that in particular implies that if the sidelobe heights are reduced,
then the mainlobe width must increase, and vice versa).

It follows from the previous discussion that in order to get
a meaningful spectral window-based objective function for the
design of , we must assume that prior information, e.g.,
in the form of a spectral estimate , is available. Under

this condition, the spectral window (which now is a two-dimen-
sional function) is given at by (see (28))

(72)

and therefore the integrated spectral window (at ) is

(73)

Compared with (68) (which can be obtained from (73) by setting
), the above function has a more appealing character:

for a given , the sidelobe corresponding to is weighted by
the power in the data sequence at ; therefore, the larger the
said power, the more emphasis will be put on minimizing the
level of the corresponding sidelobe of the spectral window.

Remark: Instead of the weighted 2-norm type of function in
(73), we might want to consider a weighted -norm objective:

(74)

The largest (weighted) sidelobe that will result from the use
of (74) will of course be smaller than the largest (weighted)
sidelobe that is obtained by using (73). However, many other
(weighted) sidelobes of the former design may be larger than
those of the latter, a fact that suggests that (73) may be prefer-
able in many cases.

The function in (73) still depends on . Because the sam-
pling times cannot be frequency dependent, we must eliminate
the dependence of the objective function on the frequency. This
can be done by “integrating” (73), weighted by , with re-
spect to as well:

(75)

In the discussion so far, we have been able to define what
appears to be a reasonable objective function that has the
form of an integrated weighted spectral window. The problem
that remains is how to minimize this function with respect
to . For relatively small values of (which is
equal to the cardinality of ), the minimization problem in
question can be solved by checking all possible combinations
of in . However, such an exhaustive combinatorial
search might not be feasible for larger values of (and of ).
In the latter case, we can proceed in the following approximate
but simpler manner.
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Let be Boolean variables: . Making use
of these variables, we can write the problem of minimizing (75)
with respect to in the following way:

(76)

Because the Boolean constraint is what makes the problem in
(76) hard, we relax it to

(77)

The problem in (76) with the constraint replaced
by (77) is a linearly constrained quadratic program that can be
solved efficiently, for instance, by means of the MATLAB1 func-
tion quadprog. Once the solution to the said program has
been found, we choose its largest elements and set them to
1 (and the rest to 0). Letting denote the
indexes of these largest elements of , we use the fol-
lowing sampling times

(78)

as an approximation of the solution to the minimization problem
of (76). (See, e.g., [22] for a general discussion on this type
of approximation of the solution to a Boolean optimization
problem.)

Finally, we remark on the possible use of a data taper, for a
given sampling pattern. LSP with a data taper can be viewed as
a special case of WLS corresponding to a diagonal weighting
matrix (whose diagonal elements are determined by the taper).
Consequently, a well chosen taper may improve the perfor-
mance of LSP. However, for RIAA this can hardly be the case,
as this method is based on a general and theoretically optimal
weighting matrix. Therefore, because the main emphasis here
is on RIAA, we do not consider data tapers in this paper.

V. NUMERICAL ILLUSTRATIONS

A. Methods Not Included in the Present Study

The main goal of this section is to illustrate the differences
in performance between LSP and RIAA, as well as between
LSP BIC and RIAA BIC. The literature on the spectral anal-
ysis of nonuniform data contains several other methods that we
do not consider in this performance study, and we explain here
why.

1MATLAB is a registered trademark of The MathWorks, Inc., Natick, MA.

First, note that we have emphasized the case of sinusoidal
data in this paper, and therefore methods designed for nonuni-
form data with continuous spectra, such as ARMA sequences,
fall outside the scope of the paper.

Of the existing methods for nonuniform sinusoidal data, the
CAP, MUSIC and ESPRIT methods introduced in [16] appear to
be the closest in spirit to the RIAA proposed here (see the cited
paper for explanations of the acronyms used to designate these
methods). Indeed, all these methods make use of the estimated
covariance matrix that is computed in the first iteration of RIAA
from LSP. In fact, CAP (when used with the same covariance
matrix dimension as RIAA) is essentially identical to the first
iteration of RIAA. MUSIC and ESPRIT, on the other hand, are
parametric methods that require a guess of the number of sinu-
soidal components present in the data, otherwise they cannot be
used; furthermore, they make the assumption that the noise in
the data sequence is white, and they may perform poorly if this
assumption is not satisfied.

Several different versions of a cyclic algorithm for estimating
the parameters of sinusoidal sequences by minimizing a non-
linear LS fitting criterion have been discussed, apparently in an
independent manner, in [3], [4], [7], and [23]–[25] (see also [26]
for a recent account). The method of this type introduced in [24]
was called RELAX, because cyclic algorithms are sometimes
referred to as relaxation algorithms in the optimization litera-
ture, and we will use this name in the following discussion to
designate a generic algorithm in this class. RELAX is a powerful
and usually quite accurate parametric method; in particular, note
that RELAX coincides with the ML under the assumption that
the noise is white and normally distributed, and that RELAX ap-
pears to be relatively insensitive to the violation of the said noise
assumption. Being a parametric method, RELAX is thus com-
parable with the LSP+BIC and RIAA BIC methods discussed
in this paper. However, unlike the latter methods, RELAX does
not provide any nonparametric (intermediate) estimate. In our
opinion, this is a drawback: indeed, a parametric spectral model
can never provide an exact description of real-world data and
therefore it may suffer from robustness issues; on the other hand,
a nonparametric spectral estimate (such as the one obtained with
RIAA) is much more robust, as it does not suffer from the mis-
modeling problems of a parametric method, and therefore it is
often good to have a nonparametric estimate at least as a back-up
for and cross-checking of a parametric estimation method.

Another class of methods, that have been recently proposed
for solving the spectral analysis problem dealt with in this paper,
make use of sparsity enforcing-based techniques (see, e.g., [16]
and [27]). While these methods have a seemingly nonparametric
flavor, in actuality they are essentially parametric and do not
provide any (intermediate) nonparametric spectral estimate, un-
like LSP+BIC and RIAA BIC. Consequently, they suffer from
the same drawback as the RELAX approach discussed in the
previous paragraph.

B. Simulated Data

We consider a data sequence consisting of sinusoidal
components with frequencies 0.1, 0.4 and 0.41 Hz, and ampli-
tudes 2,4 and 5, respectively. The phases of the three sinusoids
are independently and uniformly distributed over and the
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Fig. 1. Sampling pattern and spectral window for the simulated data case.
(a) The sampling pattern used for all Monte Carlo trials in Figs. 2–4. The
distance between two consecutive bars represents the sampling interval. (b) The
corresponding spectral window.

additive noise is white and normally distributed with mean 0 and
variance . We define the signal-to-noise ratio (SNR)
of each sinusoid as

dB (79)

where is the amplitude of the th sinusoidal component.
Hence, we have 23 dB, 29 dB and
31 dB in this example.

The sampling pattern follows a Poisson process with param-
eter 0.1 s , that is, the sampling intervals are exponentially
distributed with mean 10 s (we round off the so-gen-
erated sampling times to ten decimals, see [12]). We choose

and show the sampling pattern (which we will fix in
all Monte Carlo trials) in Fig. 1(a). Note the highly irregular
sampling intervals, which range from 0.2 to 51.2 s with mean
value 9.3 s. Fig. 1(b) shows the spectral window corresponding
to Fig. 1(a). The smallest frequency at which the spectral
window has a peak close to is approximately 10 Hz. There-
fore, according to (30), 5 Hz. In the following
plots, however, we zoom onto the interval Hz that
contains the three sinusoidal components of interest. The step
of the frequency grid is chosen as 0.005 Hz.

Fig. 2 presents the spectral estimates averaged over 100 in-
dependent realizations while Fig. 3 shows the overlapped esti-
mates from the first 15 Monte Carlo trials. LSP nearly misses the

Fig. 2. Average spectral estimates from 100 Monte Carlo trials. The solid line
is the estimated spectrum and the circles represent the true frequencies and am-
plitudes of the three sinusoids. (a) LSP and (b) RIAA.

smallest sinusoid while RIAA successfully resolves all three si-
nusoids. Note that RIAA suffers from much less variability than
LSP from one trial to another.

Next, we use BIC to select the significant peaks of the spectra
obtained by LSP and RIAA. We let denote the number
of sinusoids picked up by BIC. Then the probabilities of “cor-
rect detection,” of “false alarm” and of “miss” are defined as

and
. Fig. 4 shows the scatter plots of

the estimates for the dominant sinusoids obtained via using
LSP BIC and RIAA BIC. The LSP amplitude estimates of
the two closely-spaced sinusoids are biased and the smallest
sinusoid is frequently missed. For LSP, is only 0.03,
is 0.00, and the missing probability is as high as 0.97.
Compared to LSP, RIAA shows much better stability and
accuracy, as illustrated in Fig. 4(b). For RIAA,

, and . We also note that usually after
15 iterations RIAA’s performance does not improve visibly. So
in the above and all subsequent examples, we terminate RIAA
after 15 iterations.

Remark: In the case of a single sinusoidal signal in white
Gaussian noise, the LSP is equivalent to the method of max-
imum likelihood and therefore it is asymptotically statistically
efficient. Consequently, in this case, of academic rather than
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Fig. 3. Spectral estimates from 15 Monte Carlo trials. The solid lines are the
estimated spectra and the circles represent the true frequencies and amplitudes
of the three sinusoids. (a) LSP and (b) RIAA.

practical interest, LSP can be expected to outperform RIAA. In
numerical examples not shown here (in the interest of brevity)
we have observed that indeed in such a case LSP tends to be
somewhat better than RIAA for relatively large values of or
SNR; however, we have also observed that, even under these
conditions that are ideal for LSP, the performance of RIAA in
terms of MSE (mean squared error) is slightly better (by a frac-
tion of a dB) than that of LSP when or SNR becomes smaller
than a certain threshold.

C. Sampling Pattern Design

Suppose we have already collected data at , which
are the sampling times of the astronomical data that will be an-
alyzed in the next subsection (the unit has been changed here
from ‘day’ to ‘second’ for simplicity). The sampling pattern and
the corresponding spectral window are plotted in Fig. 5. Simi-
larly to the discussion in the last subsection we get Hz
and therefore 0.5 Hz. The set of sampling times
of possible future measurements are randomly se-
lected from the interval [0, 200] s, which covers approximately
the same period of time as .

Consider the same data sequence as in the previous subsec-
tion, except that the amplitudes of the two closely-spaced sinu-
soids (at 0.4 and 0.41 Hz) are now set to 2 and 5, respectively.

Fig. 4. Scatter plot of the dominant sinusoidal components selected by BIC
in 100 Monte Carlo trials. Dots symbolize the estimates while circles represent
the true frequencies and amplitudes of the three sinusoids. (a) LSP�BIC, and
(b) RIAA�BIC.

Fig. 6 shows the average estimated spectra and Fig. 7 shows the
scatter plot. In most trials LSP BIC finds only the strongest si-
nusoid and yields rather biased amplitude estimates. RIAA, on
the other hand, has a much better detection rate, although the
amplitude estimates are somewhat biased. The corresponding
probabilities and are 0.01, 0.00 and 0.99 for LSP
and 0.73, 0.01 and 0.26 for RIAA, respectively.

Next we use the optimal sampling design technique in
Section IV to choose from . In (76) the

are equal to the RIAA spectrum estimates ob-
tained from the given 38 samples and is chosen as 0 because
we want to achieve better estimation from only the designed
samples (for comparison with the accuracy achieved from the
given samples). Fig. 8(a) shows the designed sampling pattern.
Fig. 8(b) shows the corresponding spectral window, from which
we can infer a much larger than 0.5 Hz [cf. Fig. 5(b)]. In
the subsequent simulation with the designed sampling pattern,
however, we still choose 0.5 Hz for comparison with
the results obtained using the given sampling pattern.

With the data sequence sampled at , we obtain the
estimated spectra shown in Fig. 9 and the scatter plots in Fig. 10.
The new probabilities , and are 0.05, 0.00, and 0.95
for LSP; and 0.94, 0.06, and 0.00 for RIAA. All three sinusoidal
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Fig. 5. Sampling pattern and spectral window for the given sampling times in
the sampling design example. (a) Sampling pattern used for all Monte Carlo
trials in Figs. 6 and 7. The distance between two consecutive bars represents the
sampling interval. (b) Corresponding spectral window.

components are now clearly resolved by RIAA and the ampli-
tude estimates are also quite accurate.

D. Radial Velocity Data

Finally, we present an example based on measured astronom-
ical data, whose original analysis led to the discovery of an ex-
trasolar planet named ET-1 (see [28] and the references therein).
Fig. 11 shows the data. The sampling pattern and the corre-
sponding spectral window have been shown in Fig. 5 (with the
unit changed from “day” to “second”). Note the highly-irreg-
ular sampling intervals which range from 0.01 to 34.91 days
during a total of 198.61 days of observation. Because
0.5 cycles/day, we will be concerned with the frequency interval

cycles/day (corresponding to periods between 2 and
100 days).

Fig. 12 shows the spectra estimated by LSP and RIAA. Al-
though LSP and RIAA give almost the same dominant peak,
the relatively large sidelobe levels of LSP are not desirable. The
dominant peak selected by RIAA BIC is located at 0.2439 Hz
(4.1 days), which is consistent with the result obtained in [28]
by a relatively involved procedure. Next we synthesize the data
using the sinusoidal component picked up by BIC. Fig. 13 com-
pares the original data sequence and the synthesized waveform.
The synthesized sinusoid fits the original samples well with a
normalized mean-squared error less than 6%.

To demonstrate the advantages of RIAA over LSP, we next
use only the first 16 of the 38 available samples in the data set.

Fig. 6. Average spectral estimates from 100 Monte Carlo trials, using given 38
sampling times. Solid line is the estimated spectrum and the circles represent the
true frequencies and amplitudes of the three sinusoids. (a) LSP and (b) RIAA.

The estimated spectra are plotted in Fig. 14. In this case, the
LSP spectral estimate has large spurious peaks and the dominant
peak occurs at about 0.05 Hz. In contrast with this, RIAA still
succeeds to find the same dominant peak as before. It is worth
mentioning that the first 16 samples cover an observation period
of 100.87 days, which is about one half of the total observation
time. This implies that the observation time can be significantly
shortened via the use of RIAA.

Remark: We have also computed the LSP and RIAA spectral
estimates for other segments of the radial velocity data set, not
only for the segment made from the first 16 samples. While
we omit the corresponding plots, for brevity, we note that in
all cases we have considered the dominant peak of the RIAA
spectrum is located close to the frequency of 0.24 cycles/day
[exactly as in Figs. 12(b) and 14(b)], whereas the location of
the largest peak of the LSP spectrum varies significantly and is
rather often quite far from 0.24 cycles/day.

Finally we note that the sampling times of the radial velocity
data, used in this subsection, are an example of what we call
“pathological sampling patterns.” For such patterns, the ma-
trix (where are given
by (34)) is nearly rank-deficient, which leads to an ill-condi-
tioned matrix (see (42)) regardless of the values of elements in

. To avoid the problems induced by an ill-conditioned
, we have modified RIAA as follows (only in this subsection).
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Fig. 7. Scatter plot of the dominant sinusoidal components selected by BIC
in 100 Monte Carlo trials, using the given 38 sampling times. Dots symbolize
the estimates while circles represent the true frequencies and amplitudes of the
three sinusoids. (a) LSP�BIC, and (b) RIAA�BIC.

Let denote the eigenvalues of (arranged
in a decreasing order), and let denote the cor-
responding eigenvectors. Then we define a transformation ma-
trix as where is the largest integer in

for which . Finally, we replace the
and in (45) by and , respectively. The
above modification reduces the condition number of and
therefore ensures the stability of RIAA.

VI. CONCLUSION

We began by revisiting the periodogram to explain why ar-
guably the plain least-squares periodogram (LSP) is preferable
to the “classical” Fourier periodogram, from a data-fitting view-
point, as well as to the frequently-used form of LSP due to Lomb
and Scargle, from a computational standpoint. Then we went
on to introduce a new enhanced method for spectral analysis
of nonuniformly sampled data sequences. The new method can
be interpreted as an iteratively weighted LSP that makes use of
a data-dependent weighting matrix built from the most recent
spectral estimate. Because this method was derived for the case
of real-valued data (which is typically more complicated to deal

Fig. 8. Sampling pattern and spectral window for the designed sampling times
in the sampling design example. (a) Sampling pattern used for all Monte Carlo
trials in Figs. 9 and 10. The distance between two consecutive bars represents
the sampling interval. (b) Corresponding spectral window.

with in spectral analysis than the complex-valued data case), it
is iterative and it makes use of an adaptive (i.e., data-dependent)
weighting, we referred to it as the real-valued iterative adaptive
approach (RIAA).

LSP and RIAA are nonparametric methods that can be used
for the spectral analysis of general data sequences with both
continuous and discrete spectra. However, they are most suit-
able for data sequences with discrete spectra (i.e., sinusoidal
data), which is the case we emphasized in this paper. For the
latter type of data, we presented a procedure for obtaining a
parametric spectral estimate, from the LSP or RIAA nonpara-
metric estimate, by means of a Bayesian information criterion
(BIC). The use of BIC for the said purpose can be viewed as a
way of testing the significance of the dominant peaks of the LS
or RIAA periodograms, a problem for which there was hardly
any satisfactory solution available.

Finally, we discussed a possible strategy for designing the
sampling pattern of future measurements, based on the spec-
tral estimate obtained from the already available observations.
To compare the performances of LSP and RIAA, as well as of
their parametric versions proposed in the paper, and to illustrate
the type of results that can be obtained with the sampling pat-
tern design strategy presented here, we used both simulated and
measured data (the latter were radial velocity data collected for
extrasolar planet search).
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Fig. 9. Average spectral estimates from 100 Monte Carlo trials, using the de-
signed 38 sampling times. The solid line is the estimated spectrum and the cir-
cles represent the true frequencies and amplitudes of the three sinusoids. (a) LSP
and (b) RIAA.

APPENDIX I
EXPLANATION OF SOME TERMINOLOGY

We say that a sampling pattern is nonpathological if
the matrix

(80)

where

...
... (81)

is reasonably well conditioned (otherwise the sampling pattern
is said to be pathological). We define the conditioning number
of a matrix in the following standard way:

(82)

where and denote the maximum eigenvalue
and, respectively, the minimum eigenvalue of . Condition
numbers smaller than are well tolerated by common linear
algebra software, and the corresponding matrices can be con-
sidered to be relatively well conditioned.

Fig. 10. Scatter plot of the dominant sinusoidal components selected by BIC in
100 Monte Carlo trials, using the designed 38 sampling times. Dots symbolize
the estimates while circles represent the true frequencies and amplitudes of the
three sinusoids. (a) LSP�BIC, and (b) RIAA�BIC.

Fig. 11. Radial velocity data for HD 102195, which is the star that ET-1 orbits.
Circles represent the samples.

Note that the matrix in (80) is well approximated (to
within a multiplicative constant) by the matrix in (42) with

, that is: . This observa-
tion relates the present definition of a nonpathological sampling
pattern to that mentioned briefly in Section V-D (indeed,

, where
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Fig. 12. Spectral estimates for the radial velocity data of HD 102195. The solid
line is the estimated spectrum and the circle is the dominant peak selected by
BIC (� � � for both LSP and RIAA). (a) LSP and (b) RIAA.

Fig. 13. Reconstructed data using the dominant sinusoidal component deter-
mined by RIAA�BIC. The “x” marks represent the original data sequence and
the solid line is the synthesized waveform.

the matrix has been defined in Section V-D). For the radial
velocity data, we have

(83)

and therefore the corresponding sampling pattern can be con-
sidered to be pathological.

Fig. 14. Spectral estimates obtained using only the first 16 of the 38 samples
in the radial velocity data set. (a) LSP and (b) RIAA.

Finally, we remark on the fact that the matrix in (80) can
be viewed as the real-valued counterpart of the complex-valued
matrix in (71).
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