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ABSTRACT

Heart rate variability (HRV), which measures the fluctuation
of heartbeat intervals, has been considered as an important in-
dicator for general health evaluation. In this paper, we present
mmHRV, a contact-free HRV monitoring system using com-
mercial millimeter-wave (mmWave) radio. We devise a heart-
beat signal extractor, which can optimize the decomposition
of the phase of the channel information modulated by the
chest movement, and thus estimate the heartbeat signal. The
exact time of heartbeats is estimated by finding the peak lo-
cation of the heartbeat signal while the inter-beat intervals
(IBIs) can be further derived for evaluating the HRV met-
rics. Experimental results show that mmHRV can measure
the HRV accurately with 3.68ms average error of mean IBI
(w.r.t. 99.49% accuracy) based on the experiments over 10
participants.

Index Terms— Heart rate variability (HRV), heartbeat
estimation, wireless sensing, millimeter-wave radio.

1. INTRODUCTION

Heart rate variability (HRV), defined as the variation of the
periods between consecutive heartbeats, i.e., inter-beat inter-
vals (IBI), is an important indicator of the overall health status
of an individual [1]. Traditional measurements of the HRV
are obtained by continuously measuring the IBIs using ded-
icated medical devices such as electrocardiogram (ECG) or
photoplethysmogram (PPG) sensors, which are cumbersome
for daily use. Therefore, how to monitor the HRV in a non-
contact way has become an important topic.

Radio frequency (RF) based sensing has been regarded as
one of the most promising techniques because the presence
of a human object will affect the RF signal propagation. RF
signals reflected from the human body will be modulated by
the body movement such as the chest movement caused by
respiration and heartbeat. Therefore, vital signs of the human
subject can be unveiled by analyzing the channel propagation
characteristics [2–7].

As an early attempt of non-contact vital sign monitoring,
ViMo [8] tries to accurately estimate the heart rate (HR) of
users using commodity millimeter wave radio, but it leaves
plentiful information unaddressed for HRV estimation. In this

work, we present a subsequent work - mmHRV, aimed at non-
contact HRV estimation using a single COTS millimeter wave
radar. Technically, accurate HRV estimation is much more
difficult than HR estimation. The existing HR estimating sys-
tems usually try to accumulate samples in the time domain
to achieve higher HR estimation accuracy [8–12]. However,
they are not applicable for HRV estimation which needs the
exact time of each heartbeat.

Note that the respiration movement ranges from 4−12mm
with a frequency of 6 − 30 breaths per minute (BPM) [13]
while the heartbeat movement ranges from 0.2 − 0.5mm
with a frequency of 50− 120 BPM, both of which are quasi-
periodic signals. Given such an intrinsic feature, we develop
a heartbeat signal extractor, which optimizes the decomposi-
tion of the composite signal with several band-limited signals.
Among the decomposed signal components, the heartbeat
wave will be the one whose amplitude and frequency satisfy
the requirement of a typical heartbeat signal. The peaks of
the estimated heartbeat wave are picked to identify the exact
time of each heartbeat, and the IBIs can be further derived for
calculating several HRV metrics.

The rest of the paper is organized as follows. Section 2
presents the theoretical model of CIR measurements. The de-
tails of the heartbeat extractor and HRV estimation are intro-
duced in Section 3 while the experimental evaluation is dis-
cussed in Section 4. Section 5 concludes the paper.

2. THEORETICAL MODELING OF CIR
MEASUREMENTS

mmHRV builds upon a commodity frequency-modulated
continuous-wave (FMCW) radar [14] which transmits a se-
ries of waveforms called chirps, with the pulse repetition time
(PRT) Ts. The duration of each chirp signal is Tc, where
Tc < Ts. The frequency of the chirp signal increases linearly
with time and the transmitting signal is denoted as

xT (t) = AT exp{−j[2πfct+ π
B

Tc
t2]}, (1)

for t ∈ [0, Tc], where AT is the transmitting power, fc is the
chirp starting frequency and B is the bandwidth. When the
electromagnetic (EM) wave is reflected by the human chest at



distance d(t), the reflected signal xR(t) can be expressed as

xR(t) = AR exp{−j[2πfc(t− td) + π
B

Tc
(t− td)2]}, (2)

where AR is the amplitude of the receiving signal. td stands
for the round-trip delay and can be denoted as td = 2d(t)

c ,
where c is the speed of light. Mixing the received signal with
a replica of the transmitted signal and following a low-pass
filter, the channel information h(t) can be expressed as

h(t) = A exp {−j(2πBtd
Tc

t+ 2πfctd − π
B

Tc
t2d)}. (3)

Note that the term π B
Tc
t2d is negligible, especially in short-

range scenarios. Therefore, the h(t) can be written as

h(t) = A exp {−j(2πBtd
Tc

t+ 2πfctd)}, (4)

which is a sinusoidal signal whose frequency fb , Btd
Tc

=
2Bd(t)
cTc

depends on the target’s distance.
For simplicity, we denote the channel information for

chirp m as hm(t) , h(t − mTs), where m = bt/Tsc. For
each chirp, the baseband signal hm(t) is digitized by ADC,
producing N samples per chip, referred to as fast time. As
the frequency of hm(t) relates to the distance of reflecting
point, the channel impulse response (CIR) can be obtained by
performing Range-FFT, where

h(r,m) =

N−1∑
n=0

hm(n) exp {−j2πrn/N}. (5)

Here we assume the reflected signal falls into the r0-th range
bin, then the CIR in Equ. (4) can be rewritten as

hr0(m) = h̃r0 exp {2πfctd(m)}, (6)

where the common phase shift is absorbed in h̃r0 , and we
can observe that the phase of the CIR measurement changes
periodically in slow time due to the periodic motions of res-
piration and heartbeat.

3. HEARTBEAT EXTRACTION AND HRV
ESTIMATION

Estimating HRV requires accurate estimation of inter-heartbeat
intervals (IBIs), therefore, we need to extract the displace-
ment change caused by heartbeats (a.k.a., heartbeat wave)
from the compound displacement change of chest wall and
detect moments in which heartbeats occur.

3.1. Heartbeat Extraction Algorithm

Recall that the phase information reflects the distance change
caused by vital signs. For simplicity, we directly use the ana-
log form of signals, and the distance change of the human
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Fig. 1: Processing flow of heartbeat wave extraction.

chest can be written as

y(t) = sm(t) + sr(t) + sh(t) + n(t), (7)

where sm(t) denotes the distance change caused by body mo-
tion. sr(t) and sh(t) denote the distance change caused by
respiration and heartbeat, respectively. n(t) is the random
phase offset introduced by noise, which is independent with
the phase change caused by vital signs.

Note that both sr(t) and sh(t) are quasi-periodic signals,
where the period can slightly change over time. Besides, we
assume the body motion introduces few oscillations, i.e., a
base-band signal. Thus, the signals related with the human
subject are sparse in the spectral domain and we can recon-
struct these signals with a few band-limited signals. In spe-
cific, each component uk(t) is assumed to be compact around
a center pulsation ωk, which is to be determined along with
the decomposition. Moreover, the decomposition should sat-
isfy the spectrum sparsity and data fidelity requirements at the
same time, which is modeled as

min
uk∈U,ωk∈Ω

α

K∑
k=1

∥∥∥∥∂t [(δ(t) +
j

πt
) ∗ uk(t)] exp(−jωkt)

∥∥∥∥2

2

+

∥∥∥∥∥y(t)−
K∑

k=1

uk(t)

∥∥∥∥∥
2

2

,

(8)

where the first term evaluates the bandwidth of the analytic
signal associated with each component, and the second term
evaluates the data fidelity. K is the total number of decom-
position components, where U = {u1(t), . . . , uK(t)} and
Ω = {ω1, . . . , ωK} are the set for all components and their
center frequencies, respectively. α is a parameter for balanc-
ing the bandwidth constraint and data fidelity.

Once the hyper-parameters are known, the optimization
problem in Equ. (8) can be solved by alternatively updating
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(a) Decomposition of a typical phase signal in time domain
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(b) Corresponding spectrum of the decomposed component

Fig. 2: Example of heartbeat extractor. (a) is the decomposition result in time domain, (b) is the corresponding spectrum of each
component. In this example, the 1st component corresponds to body motion, the 2nd component corresponds to respiration and
the 3rd component corresponds to heartbeat.

uk(t) and ωk until convergence, i.e. ADMM algorithm [15].
The minimizer of the Equ. (8) w.r.t. uk(t) is [16],

uk(ω) =
†(ω)−

∑
i,i6=k ui(ω)

1 + 2α(ω − ωk)2
, (9)

where uk(ω) and †(ω) are the Fourier transfer of uk(t) and
y(t) respectively. Besides, the minimizer of the Equ. (8) w.r.t.
ωk is

ωk =

∫∞
0
ω|uk(ω)|2dω∫∞

0
|uk(ω)|2dω

. (10)

However, it is hard to predefine these hyper-parameters in real
applications for heartbeat wave extraction. First, the human
motion does not always exist and the human respiration some-
times will have a strong second harmonic component, making
it even harder to determine the component number. Further-
more, the hyper-parameter α also influences the decomposi-
tion performance by adjusting the balance between bandwidth
constraint and data fidelity.

In mmHRV, to accurately decompose the signal and get
the heartbeat wave, we are trying to adaptively change the
component number K and α for different datasets, as shown
in Fig. 1. The system tries to get the estimate of heartbeat
wave with relative small predefined K and α. If the decom-
posed components do not contain the heartbeat signal, the
hyper-parameter K increases to avoid the mode mixing prob-
lem. Considering that only a limited number of sources con-
sist the composite phase signal, there is an upper-bound for
the component number K. When the hyper-parameter K
exceeds the upper-bound and the system still does not get a
good estimate of the heartbeat signal, the hyper-parameter α
increases to further avoid mode mixing problem. The upper-
bound of α is predefined to save the computation time, and
the algorithm will terminate either when the heartbeat sig-
nal is successfully decomposed or both α and K exceed the
upper-bound. Thanks to the selection of location bins w.r.t.
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Fig. 3: Example of IBI estimation. The ground-truth from
ECG are marked as dashed lines.

human chest before heartbeat signal extraction, where the se-
lected phase signal should exhibit periodicity and its variance
should fall in a predefined range (i.e., SINR constraint), we
do not observe the decomposition failure case in the experi-
mental evaluation.

Fig. 2 illustrates the decomposition of a typical one-
minute phase signal from the experiment, where the original
phase information has been decomposed into 3 components.
The first component reflects the body motion of the human
subject, the second component is the respiration motion, and
the third component is the heartbeat wave. The spectrum of
each component is shown in Fig. 2 (b).

3.2. HRV Estimation

Once the heartbeat wave is extracted, the exact time corre-
sponding to each heartbeat can be identified by the peaks of
the heartbeat wave. To further increase the accuracy, normal-
ization is performed before peak extraction. IBIs can thus be
derived by calculating the time duration between two adja-
cent heartbeats. Fig. 3 shows a segment of heartbeat wave



Table 1: HRV estimation results in terms of mean IBI, RMSSD and SDRR for 10 subjects.

Metrics Methods
User ID

1 2 3 4 5 6 7 8 9 10

Mean
IBI

Value
(ms)

ECG 899.4 789.9 723.2 854.6 654.5 645.2 890.1 564.9 728.1 763.8
mmHRV 906.3 790.4 725.6 848.6 652.4 644.2 888.1 574.2 722.7 762.6

BPFB 881.5 784.2 781.5 842.1 676.6 651.5 878.4 579.1 719 773.5
mmHRV 6.95 0.45 2.47 5.92 2.17 0.99 1.97 9.33 5.38 1.2Error

(ms) BPFB 17.87 5.7 58.36 12.44 22.01 6.31 11.66 14.21 9.16 9.66

RMSSD

Value
(ms)

ECG 38.59 10.85 37.56 31.49 34.05 16.88 27.52 5.26 23.28 31.16
mmHRV 33.52 16.53 39.08 35.26 20.29 18.14 26.06 27.8 30.52 34.92

BPFB 59.34 54.26 53.83 52.94 78.57 95.09 45.56 140.36 59.61 47.92
mmHRV 5.08 5.68 1.52 3.77 13.76 1.26 1.46 22.53 7.25 3.76Error

(ms) BPFB 20.75 43.41 16.27 21.45 44.53 78.21 18.04 135.1 36.34 16.76

SDRR

Value
(ms)

ECG 56.28 22.91 50.54 35.35 33.61 23.24 32.66 12.25 35.83 50.87
mmHRV 43.22 27.25 53.3 45.88 33.54 25.49 37.43 38.66 37.15 45.51

BPFB 71.01 47.28 110.29 58.92 69.68 67.61 50.44 118.41 47.92 63.94
mmHRV 13.07 4.34 2.76 10.53 0.07 2.24 4.78 26.42 1.31 5.36Error

(ms) BPFB 14.72 24.37 59.74 23.57 36.07 44.37 17.78 106.16 12.09 13.07

and its ECG ground-truth, where the dashed lines show the
exact time of each heartbeat from a commercial ECG sen-
sor [17]. The peaks of normalized heartbeat wave match with
the ground-truth, as shown in Fig. 3.

The HRV features can be further obtained from the IBI se-
quence. In mmHRV, we use the two most widely used metrics
to evaluate the HRV [18]. One is the root mean square of suc-
cessive differences (RMSSD), which measures the successive
IBI changes, and can be calculated by

RMSSD =

√√√√ 1

NIBI − 1

NIBI∑
i=2

(IBI(i)− IBI(i− 1))2, (11)

where NIBI is the total number of IBIs of the measurement.
The other one is SDRR, which measures the standard devia-
tion of all the IBIs, can be calculated as

SDRR =

√√√√ 1

NIBI

NIBIIBI∑
i=1

(IBI(i)− IBI)2, (12)

where IBI is the empirical mean of the IBIs.

4. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of mmHRV,
where 10 participants (5 male and 5 female) aging from 20
to 60 are enrolled for testing. To further evaluate the perfor-
mance of the proposed system, we compare mmHRV with

the state-of-the-art HRV estimation technique using band-
pass-filter-bank (BPFB) [19], where the heartbeat signal is
estimated by using the narrow BPF whose passing band con-
tains HR.

Table. 1 shows the estimated HRV features in terms of
mean IBI, RMSSD and SDRR of 10 participants, where the
distance between user and device is 1m. It is shown that
mmHRV can achieve 3.68ms average error of mean IBI,
6.61ms average error of RMSSD and 7.09ms average error
of SDRR. Correspondingly, the average estimation error of
BPFB is 16.73ms of mean IBI, 43.09ms of RMSSD and
35.19ms of SDRR. We can see that mmHRV outperforms
BPFB for all the 3 metrics. This is because that mmHRV
directly extracts the heartbeat signal from the composite
signal by optimizing the decomposition, so that the error
propagation from breathing as well as random body motion
elimination can be avoided. Besides, the accurate heart rate
estimation is necessary for BPFB method, which however is
vulnerable to noise and interference from other signal com-
ponents.

5. CONCLUSION

In this paper, we develop mmHRV to estimate HRV using
CIR measured by a commercial millimeter wave radar. The
heartbeat wave is estimated by decomposing the composite
phase signal concurrently to avoid the error propagation issue
compared to the state-of-art work. Experiment results show
the potential of the proposed system for contactless HRV es-
timation with high accuracy.
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